京公网安备 11010802034615号
经营许可证编号:京B2-20210330
制造企业利用大数据分析应对极具挑战的商业环境
一项针对200位高管开展的调查显示,大多数制造企业有计划明年增加数据分析方面的投资,即使需要推迟其他技术投资 -霍尼韦尔成熟的自动化技术和服务能够助力制造业向工业物联网演变
美国得克萨斯州休斯敦2016年9月19日电 /美通社/ -- 霍尼韦尔(纽约证券交易所代码:HON)过程控制部近期联合KRC Research研究机构开展的一项针对制造企业高管的调查显示,大多数受访者(67%)都在积极推进数据分析方面的投资计划以应对极具挑战的商业环境,即便削减其它领域的投资也势在必行。
当被问及原因时,很多受访者表示数据分析是工业物联网(IIoT)的关键组成部分,它能够有效解决导致停机和利损的一系列问题。
霍尼韦尔过程控制部数字化转型业务副总裁兼总经理安德鲁·赫德(Andrew Hird)表示:“企业高管们需要确保公司业务平稳且安全地运营。即便现金紧张,他们也希望能够利用工业物联网技术应对业务挑战。四十多年来,霍尼韦尔为帮助制造商实现这些目标提供了领先的自动化技术。霍尼韦尔工业物联网解决方案正是实现这场业务演变的下一步举措。”
来自北美制造业的200多位高管于2016年5月23日至6月8日参与了这项名为“数据对制造业的巨大影响:高管意见研究”的调查。其它主要发现包括:
一些公司表示不得不在意外停机和设备故障的威胁下继续运营,而这些因素是扩大收益的最大障碍。 大多数公司表示它们正在对数据分析技术进行投资。 25%以上的受访者表示明年不打算对数据分析进行投资。原因主要是对数据分析所带来的好处不了解以及资源不足。
艰难的停机周期
意外停机是收益最大化的头号威胁,不过42%的受访者承认在经营过程中有过让设备保持超负荷运行状态的操作。当被问及近年来出现一系列问题的频率时,71%的受访者表示至少偶尔会出现设备故障,64%的受访者表示出现过类似频率的意外停机。
赫德表示:“工厂设备超负荷运行会带来设备故障、潜在安全事故等一系列问题。这些问题不可避免地会导致更多的停机时间,从而造成收益损失。很显然,很多公司都陷入了这种恶性循环之中。霍尼韦尔高效的工业物联网解决方案所提供的预测性分析能够帮助公司走出这种恶性循环。”
40%的受访者认为意外停机是收益最大化的头号威胁。其他威胁因素包括:
供应链管理问题(39%) 人员配备不足(37%) 不合格产品(36%) 设备故障(32%)
数据分析是可行的解决方案
数据分析是制造企业成功实施工业物联网的关键组成部分。大多数受访者对数据分析作为解决方案所带来的收益持积极态度。比如,受访高管们承认大数据分析能够降低以下问题的出现频率:
设备故障(70%) 意外停机(68%) 计划外维修(64%) 供应链管理问题(60%)
受访者认为,数据有助他们得到必要的信息并实时做出正确决定(63%),减少浪费(57%),并预测停机风险(56%)。
赫德表示:“这其中的道理不难理解。这些高管明白数据分析能够帮助他们应对业务运营所面临的头号威胁 -- 意外停机。因此,他们觉得有必要继续投资。”
此外,超过三分之二的受访者(68%)表示,他们目前正在对数据分析进行投资。50%的受访者表示,自己所在的公司已经在数据分析使用方面步入了正轨。15%的受访者表示,其公司在数据分析使用方面走在了行业前列。
并非人人都采取了行动
尽管大多数受访者表示正在进行和/或计划在明年增加数据分析方面的投资,但仍有32%的受访者表示目前没有对数据分析进行投资,33%的受访者表示未来一年公司没有数据分析方面的投资计划或者不知道这方面有什么投资计划。
目前没有投资计划的受访者中:
61%的受访者认为现有系统能够确保安全性、保证产量,并帮助公司获得成功 45%的受访者表示在没有数据分析的情况下公司依然实现了增长 42%的受访者表示他们对大数据所能带来的好处不甚了解 35%的受访者表示人们夸大了大数据所能带来的好处
在没有投资计划的受访者中,63%的受访者表示他们没有这方面的合适资源,39%的受访者则表示他们没有合适的数据分析人才。
赫德解释道:“对于一些公司来说,部署工业物联网还存在着一些障碍。有些认为他们并不需要,另外一些公司则表示缺少合适的资源。好消息就是,工业物联网并不需要企业进行脱胎换骨的改变,它可以根据各个公司的情况进行阶段性渐进式实施和扩展。这也是霍尼韦尔将工业物联网称为演变,而不是变革的原因所在。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24