
人工智能时代,深度学习和大数据变得密不可分
人工智能时代,深度学习和大数据成了密不可分的一对儿。深度学习可以从大数据中挖掘出以往难以想象的有价值的数据、知识或规律。简单来说,有足够的数据作为深度学习的输入,计算机就可以学会以往只有人类才能理解的概念或知识,然后再将这些概念或知识应用到之前从来没有看见过的新数据上。
《智能时代》的作者吴军博士说:“在方法论的层面,大数据是一种全新的思维方式。按照大数据的思维方式,我们做事情的方式与方法需要从根本上改变。”
谷歌的围棋程序AlphaGo已经达到了人类围棋选手无法达到的境界。没有人可以与之竞争,这是因为AlphaGo在不断进行学习。AlphaGo不但从人类专业选手以往的数百万份棋谱中学习,还可以从自己和自己的对弈棋谱中学习。人类专业选手的对局、AlphaGo自己与自己的对局,这些都是AlphaGo赖以学习提高的大数据。
基于大数据的深度学习到底如何在现实生活中发挥作用呢?一个非常好的例子是,计算机可以通过预先学习成千上万张人脸图片,掌握认识和分辨人脸的基本规律。然后,计算机可以记住全国所有通缉犯的长相。没有一个单独的人类警察可以做到这一点。这样一来,只要通缉犯在公共场合一露面,计算机就可以通过监控摄像头采集的图像将通缉犯辨认出来。大数据和深度学习一起,可以完成以前也许需要数万名人类警察才能完成的任务。
任何拥有大数据的领域,我们都可以找到深度学习一展身手的空间,都可以做出高质量的人工智能应用。任何有大数据的领域,都有创业的机会。
金融行业有大量客户的交易数据,基于这些数据的深度学习模型可以让金融行业更好地对客户进行风险防控,或针对特定客户进行精准营销;电子商务企业有大量商家的产品数据和客户的交易数据,基于这些数据的人工智能系统可以让商家更好地预测每月甚至每天的销售情况,并提前做好进货准备;城市交通管理部门拥有大量交通监控数据,在这些数据的基础上开发的智能交通流量预测、智能交通疏导等人工智能应用正在大城市中发挥作用;大型企业的售后服务环节拥有大规模的客服语音和文字数据,这些数据足以将计算机训练成为满足初级客服需要的自动客服员;教育机构拥有海量的课程设计、课程教学数据,针对这些数据训练出来的人工智能模型可以更好地帮助老师发现教学中的不足……
需要注意的是,大数据和人工智能的结合也可能给信息流通和社会公平带来威胁。在2016年的美国大选中,有一家名为Cambridge Analytica的公司就基于人工智能技术,用一整套分析和引导舆论的软件系统来操纵选情。这个系统可以自动收集和分析互联网上的选情信息,评估人们对两位总统候选人的满意度,并通过给定向用户投放信息,自动发送虚假新闻等技术手段,宣传自己所支持的候选人,还可以通过A/B组对照试验,准确判断每个州的选民特征,为自己所支持的竞选团队提供第一手的数据资料和决策依据。美国伊隆大学的助理教授兼数据科学家乔纳森·奥尔布赖特不无忧虑地说:“这简直就是台宣传机器。它一个个地拉拢公众,使他们拥护某个立场。如此程度的社会工程,我还是头一次见……”
此外,在大数据发挥作用的同时,人工智能研发者也一定不要忘了,大数据的应用必然带来个人隐私保护方面的挑战。为了给你推送精准的广告信息,就要收集你的购买习惯、个人喜好等数据,这些数据中往往包含了许多个人隐私;为了获得以人类基因为基础的医疗大数据来改进疾病的诊疗,就要通过某种渠道收集尽可能多的人类基因样本,而这些数据一旦保管不善,就可能为提供基因样本的个人带来巨大风险;为了建立智能城市,就要监控和收集每个人、每辆车的出行信息,而这些信息一旦被坏人掌握,往往就会成为案犯最好的情报来源……
有效、合法、合理地收集、利用、保护大数据,是人工智能时代的基本要求,需要政府、企业、个人三方共同协作,既保证大规模信息的正常流动、存储和处理,又避免个人隐私被滥用或被泄露。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15