京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么说大数据是智能汽车的基础
可能有人会说,智能汽车不是都已经实现了吗?正在热卖的特斯拉和已经广为人知的Google无人驾驶汽车不就是智能汽车的代表吗?
我的看法是:这仅是智能汽车的星星之火,大部分的汽车还仅仅局限在加装智能硬件实现,能重新完整开发设计一个智能系统的也只有特斯拉和Google两家,并且也还存在种种问题,没有普及开来。
真正要实现智能汽车的关健是智能汽车数据孤岛的互联互通,这是智能汽车行业发展最大障碍之一。
先来看看智能汽车大数据的生产,几乎所有路上跑着的汽车都在产生难以置信的庞大数据量,轮胎气压,到发动机转速,到油温和速度,刹车片在传感器的监测之下,汽车每小时能产生5-250GB的数据。谷歌无人驾驶汽车每秒产生约1G的数据,相当于每秒发送20万封纯文本电子邮件或用电脑上传100张高清数码相片,每一辆高度电气化集成的汽车都是一个庞大的数据库。
有了这么多大数据,按理说我们的汽车智能应该普及度如此之低?电动车,货运,商务,私家车应该都享受到大数据带来的智慧,关健的问题是这各个大数据是孤立互不相联的,智能汽车的大数据平台化严重不足,目数据平台化大众汽车做得相对较好,这跟它是传统汽车厂商,有足量的销售产量息息相关。
那么我们来探究下为何如此?
1.汽车本身系统工程产品,汽车行业产业链太长,产品研发和产业整合难度大。
能重新完整开发设计一个智能系统的也只有特斯拉和GOOGLE两家,而且还存在种种问题,汽车行业的产业链条,配件就有数千种,4S店更是数为胜数,还牵涉到保险公司,与市政建设公路的智能化也密切相关。智能交通是一定需要政府的参与才能实现,智车汽车行业的发展也需要政府战略指导。就像“万众创新,大众创业“的政策支持和鼓励一样!
2.汽车厂商通讯标准各不统一,私有协议破解难度大。
OBD是汽车总线数据收集的一个关健设备,4S店维保故障判断,尾气的排查,保险公司取证数据都是需要从这个设备读取,但如果读取到发动机和车主更私密的信息需要破解OBD其私有协议,这个各个厂商各不统一,不像网络通讯都遵循TCP/IP协议,这也是数据孤岛形成的根本原因之一。
私有协议的破解本身除了有知识产权的风险以外,也存在由此引起的汽车安全事故责任的区分。一般破解私有协议的汽车也再享受不到原厂的服务。
3.传统汽车厂商之间以及与新生的互联网公司之间的利益纠葛。
汽车行业是一个庞大的产业链条,从整车到配件到服务再到保险,传统汽车厂商之前都是各自为营,市场本身就是冲突的,传统行业传统做法也不提畅共享。而共享是受互联网倒逼传统的结果。新生的互联网公司的智能硬件更多的是通过后置安装实现,这样只实现汽车部分功能的智能。导航仪,行车记录仪就是一种,通过公有协议将汽车运数据上传到手机APP也是一种。
对于数据的挖掘,需要云计算,大数据专业公司的技术支撑,但数据就像私家珍宝谁也不可能轻易共享,但传统汽车厂商很难短时间内能建立自已的大数据挖掘的人才队伍,这是两个完全不同的分工。
人对于车最本质的需要,是安全舒适轻松的从一个地方到另一个地方,自动驾驶和全自动化服务是智能汽车的终极目标,但安全却是需要反复验证的。
而实现这终极目标的关健是:
数据交互,人与车的交互,车与车的交互,车与路的交互,车与4S店,4S店与汽车厂商之前的交互。车与车主驾驶者的交互,充分的掌握汽车实时的运行数据,这些数据可以实时传给汽车服务商对汽车及时保养和安全检查。同时人车交互可以让驾驶者提前收到车况的预警信息,在事故发生时主动制动。人车交互语音信息是大家都在探索的方向。
车与车的交互就像智能人与人之间的交互一样,礼貌行车,安全行车,数据共享这将是车智能的源泉,从智能汽车到汽车智能的关健。车与路的交互依赖道路的智能化,车和智能交通设备之间的感应,车与4S店交互实现全自动化的服务,定期维护保养再也不需要人不离车,才能安全实现。
智能汽车大数据是汽车智能的前提和基础,是含金量足够丰富的黄金宝矿,但这需要我们准备好工具,储备好人才,携手向前,才能攫取这宝贵财富,才能享受到真正智能汽车的智慧生活!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10