
网站分析师必备的九大利器_数据分析师
如果你想成为网站分析师!想加入网站分析这个即有前途又有“钱途”的行业,那么你至少需要具备本文所提到的9大本领。
1.玩转Excel
Excel是一个最原始而且最容易入手的分析工具之一,如果你有少量的数据进行分析和汇总的话,Excel是你的不二之选,结合丰富的函数与公式,你能轻松的得到你想要的数据,如果你懂得计算机语言,会使用VBA进行编程那就更是如虎添翼了,并且还可以轻松的制作棒图,饼图,折线图等图表。但是Excel不可能是完美的分析工具,因为他的数据容量实在是太小了,超过1万行的数据请不要使用Excel。
1.1.常用函数:
1.2.常用功能:
2.网站分析基础知识
了解一些网站分析的基础知识是必须的,你要知道什么是会话,什么是PV,什么是UU/UV等指标值的含义。如下图(摘自《网站分析基础教程 第二章》)所示:
3.网站开发的知识
网站分析师通过衡量各种指标值的优劣来评价网站的状况,以及提出改善优化的对策,如果分析师自己对网站的开发和构筑知识一点都不了解,也就不能准确的通过分析指标值的高低衡量网站的运营状况。
作为一名合格的网站分析师,你需要了解一些网站建设和运营的知识,还有网站设计的知识,以及用户体验相关的知识。这样的话你才能提出更有高度和深度的分析报告。
4.网络营销的知识
网站分析师的工作范围从宏观上可以分为“站内”和“站外”两大领域。站内重点在于改善用户体验,优化转化路径,SEO,分析用户行为等站内活动;站外的工作重点则在于如何更多更准确更优质的吸引用户进入网站。
所谓站外的工作主要就是指网络营销,网络营销按照具体的实现方式可以分为:展示广告(Display Advertising)、PPC推广、SEO、邮件营销、视频推广、QQ群推广、博客营销、微博营销、SNS营销等。如果想成为网站分析师你需要学习如下知识:
4.1.广告类型
搜索引擎广告(PPC)
交换链接
横幅广告
邮件营销
传统媒体广告
4.2. 广告相关指标
展现数(Impressions)
点击数
点击率(Click-through Rate)
CPC(Cost Per Click)
CPA(Cost Per Acquisition)
转化率(Conversion Rate)
ROAS(Return On Advertising Spend)
4.3.SEO知识
主流搜索引擎的排名算法
TITLE,META,Hn,h1等优化
5.测试方法
当网站分析指标的数值变得不是非常乐观的时候,或者你想做一次大规模的推广的时候,也可能是你需要对网站进行改版的时候,作为分析师需要预知改善后的效果是否能够达到预期,这一点是光凭经验很难做到的事情,那么就需要网站分析师聪明的利用师验方法进行验证,这是最直接而且准确有效的方法。
做网站分析师需要学会使用如:A/B测试,多变量测试,用户体验测试等测试方法对改善方案进行预评估,以减少新方案的实施风险。
6.交流能力
作为一名网站分析师,你需要和很多的人协同完成工作任务,其中包括项目经理,产品经理,运营经理,实施经理以及网站分析工具提供商等。高效率,准确的交流显得尤为重要。
对于交流来说,语言的表达能力作为最基本的能力要素不可或缺,但想要能顺畅的交流仅仅依靠语言是远远不够的,还需要有一定的资料的组织能力和总结能力,以及团队合作意识。
7.演讲的能力
当以网站分析师为主导进行一次网站的改版或升级的时候,通常的做法是用数字和图表来说服决策层和保守派,但事实上并不那么简单,说服更多人除了靠准确的分析数据以外,还需要网站分析师非常具有煽动性的演讲,以及面对质疑从容不迫的回应。网站分析师需要把自己的自信通过演讲的形式传播给参加会议的所有在场的人。
8.PPT制作能力
演讲和演示的时候,必备的利器!当然如果你能够做出很炫的动画效果将能感染更多的。
9.项目管理能力
如果你在一家小公司担任网站分析师职务的话,计划管理可能显得不那么重要,但如果你是一家大公司的网站运营经理,或者带领一个几十人的分析师团队的话,计划的管理能力将显得尤为重要。为了更好的和项目经理以及公司管理层的交流你需要具备这项技能,甚至有必要学习一些项目管理的相关知识,比如PMP认证等。本文:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29