京公网安备 11010802034615号
经营许可证编号:京B2-20210330
图像处理之Harris角度检测算法
Harris角度检测是通过数学计算在图像上发现角度特征的一种算法,而且其具有旋转不
变性的特质。OpenCV中的Shi-Tomasi角度检测就是基于Harris角度检测改进算法。
基本原理:
角度是一幅图像上最明显与重要的特征,对于一阶导数而言,角度在各个方向的变化是
最大的,而边缘区域在只是某一方向有明显变化。一个直观的图示如下:
数学原理:
基本数学公式如下:
其中W(x, y)表示移动窗口,I(x, y)表示像素灰度值强度,范围为0~255。根据泰勒级数
计算一阶到N阶的偏导数,最终得到一个Harris矩阵公式:
根据Harris的矩阵计算矩阵特征值,然后计算Harris角度响应值:
其中K为系数值,通常取值范围为0.04 ~ 0.06之间。
算法详细步骤
第一步:计算图像X方向与Y方向的一阶高斯偏导数Ix与Iy
第二步:根据第一步结果得到Ix^2 , Iy^2与Ix*Iy值
第三步:高斯模糊第二步三个值得到Sxx, Syy, Sxy
第四部:定义每个像素的Harris矩阵,计算出矩阵的两个特质值
第五步:计算出每个像素的R值
第六步:使用3X3或者5X5的窗口,实现非最大值压制
第七步:根据角度检测结果计算,最提取到的关键点以绿色标记,显示在原图上。
程序关键代码解读:
第一步计算一阶高斯偏导数的Ix与Iy值代码如下:
filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION); BufferedImage xImage = filter.filter(grayImage, null); getRGB( xImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width); filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION); BufferedImage yImage = filter.filter(grayImage, null); getRGB( yImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width);
关于如何计算高斯一阶与二阶偏导数请看这里:
http://blog.csdn.net/jia20003/article/details/16369143
http://blog.csdn.net/jia20003/article/details/7664777
第三步:分别对第二步计算出来的三个值,单独进行高斯
模糊计算,代码如下:
private void calculateGaussianBlur(int width, int height) { int index = 0; int radius = (int)window_radius; double[][] gw = get2DKernalData(radius, sigma); double sumxx = 0, sumyy = 0, sumxy = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix whm = harrisMatrixList.get(index2); sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient()); sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient()); sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy()); } } index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); hm.setXGradient(sumxx); hm.setYGradient(sumyy); hm.setIxIy(sumxy); // clean up for next loop sumxx = 0; sumyy = 0; sumxy = 0; } } }
第六步:非最大信号压制(non-max value suppression)
这个在边源检测中是为了得到一个像素宽的边缘,在这里则
是为了得到准确的一个角点像素,去掉非角点值。代码如下:
/*** * we still use the 3*3 windows to complete the non-max response value suppression */ private void nonMaxValueSuppression(int width, int height) { int index = 0; int radius = (int)window_radius; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double maxR = hm.getR(); boolean isMaxR = true; for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix hmr = harrisMatrixList.get(index2); if(hmr.getR() > maxR) { isMaxR = false; } } } if(isMaxR) { hm.setMax(maxR); } } } }
运行效果:
程序完整源代码:
package com.gloomyfish.image.harris.corner; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; import com.gloomyfish.filter.study.GrayFilter; public class HarrisCornerDetector extends GrayFilter { private GaussianDerivativeFilter filter; private List<HarrisMatrix> harrisMatrixList; private double lambda = 0.04; // scope : 0.04 ~ 0.06 // i hard code the window size just keep it' size is same as // first order derivation Gaussian window size private double sigma = 1; // always private double window_radius = 1; // always public HarrisCornerDetector() { filter = new GaussianDerivativeFilter(); harrisMatrixList = new ArrayList<HarrisMatrix>(); } @Override public BufferedImage filter(BufferedImage src, BufferedImage dest) { int width = src.getWidth(); int height = src.getHeight(); initSettings(height, width); if ( dest == null ) dest = createCompatibleDestImage( src, null ); BufferedImage grayImage = super.filter(src, null); int[] inPixels = new int[width*height]; // first step - Gaussian first-order Derivatives (3 × 3) - X - gradient, (3 × 3) - Y - gradient filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION); BufferedImage xImage = filter.filter(grayImage, null); getRGB( xImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width); filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION); BufferedImage yImage = filter.filter(grayImage, null); getRGB( yImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width); // second step - calculate the Ix^2, Iy^2 and Ix^Iy for(HarrisMatrix hm : harrisMatrixList) { double Ix = hm.getXGradient(); double Iy = hm.getYGradient(); hm.setIxIy(Ix * Iy); hm.setXGradient(Ix*Ix); hm.setYGradient(Iy*Iy); } // 基于高斯方法,中心点化窗口计算一阶导数和,关键一步 SumIx2, SumIy2 and SumIxIy, 高斯模糊 calculateGaussianBlur(width, height); // 求取Harris Matrix 特征值 // 计算角度相应值R R= Det(H) - lambda * (Trace(H))^2 harrisResponse(width, height); // based on R, compute non-max suppression nonMaxValueSuppression(width, height); // match result to original image and highlight the key points int[] outPixels = matchToImage(width, height, src); // return result image setRGB( dest, 0, 0, width, height, outPixels ); return dest; } private int[] matchToImage(int width, int height, BufferedImage src) { int[] inPixels = new int[width*height]; int[] outPixels = new int[width*height]; getRGB( src, 0, 0, width, height, inPixels ); int index = 0; for(int row=0; row<height; row++) { int ta = 0, tr = 0, tg = 0, tb = 0; for(int col=0; col<width; col++) { index = row * width + col; ta = (inPixels[index] >> 24) & 0xff; tr = (inPixels[index] >> 16) & 0xff; tg = (inPixels[index] >> 8) & 0xff; tb = inPixels[index] & 0xff; HarrisMatrix hm = harrisMatrixList.get(index); if(hm.getMax() > 0) { tr = 0; tg = 255; // make it as green for corner key pointers tb = 0; outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb; } else { outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb; } } } return outPixels; } /*** * we still use the 3*3 windows to complete the non-max response value suppression */ private void nonMaxValueSuppression(int width, int height) { int index = 0; int radius = (int)window_radius; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double maxR = hm.getR(); boolean isMaxR = true; for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix hmr = harrisMatrixList.get(index2); if(hmr.getR() > maxR) { isMaxR = false; } } } if(isMaxR) { hm.setMax(maxR); } } } } /*** * 计算两个特征值,然后得到R,公式如下,可以自己推导,关于怎么计算矩阵特征值,请看这里: * http://www.sosmath.com/matrix/eigen1/eigen1.html * * A = Sxx; * B = Syy; * C = Sxy*Sxy*4; * lambda = 0.04; * H = (A*B - C) - lambda*(A+B)^2; * * @param width * @param height */ private void harrisResponse(int width, int height) { int index = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double c = hm.getIxIy() * hm.getIxIy(); double ab = hm.getXGradient() * hm.getYGradient(); double aplusb = hm.getXGradient() + hm.getYGradient(); double response = (ab -c) - lambda * Math.pow(aplusb, 2); hm.setR(response); } } } private void calculateGaussianBlur(int width, int height) { int index = 0; int radius = (int)window_radius; double[][] gw = get2DKernalData(radius, sigma); double sumxx = 0, sumyy = 0, sumxy = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix whm = harrisMatrixList.get(index2); sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient()); sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient()); sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy()); } } index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); hm.setXGradient(sumxx); hm.setYGradient(sumyy); hm.setIxIy(sumxy); // clean up for next loop sumxx = 0; sumyy = 0; sumxy = 0; } } } public double[][] get2DKernalData(int n, double sigma) { int size = 2*n +1; double sigma22 = 2*sigma*sigma; double sigma22PI = Math.PI * sigma22; double[][] kernalData = new double[size][size]; int row = 0; for(int i=-n; i<=n; i++) { int column = 0; for(int j=-n; j<=n; j++) { double xDistance = i*i; double yDistance = j*j; kernalData[row][column] = Math.exp(-(xDistance + yDistance)/sigma22)/sigma22PI; column++; } row++; } // for(int i=0; i<size; i++) { // for(int j=0; j<size; j++) { // System.out.print("\t" + kernalData[i][j]); // } // System.out.println(); // System.out.println("\t ---------------------------"); // } return kernalData; } private void extractPixelData(int[] pixels, int type, int height, int width) { int index = 0; for(int row=0; row<height; row++) { int ta = 0, tr = 0, tg = 0, tb = 0; for(int col=0; col<width; col++) { index = row * width + col; ta = (pixels[index] >> 24) & 0xff; tr = (pixels[index] >> 16) & 0xff; tg = (pixels[index] >> 8) & 0xff; tb = pixels[index] & 0xff; HarrisMatrix matrix = harrisMatrixList.get(index); if(type == GaussianDerivativeFilter.X_DIRECTION) { matrix.setXGradient(tr); } if(type == GaussianDerivativeFilter.Y_DIRECTION) { matrix.setYGradient(tr); } } } } private void initSettings(int height, int width) { int index = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix matrix = new HarrisMatrix(); harrisMatrixList.add(index, matrix); } } } }
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22