
大数据时代,如何规范使用数据
在最近的一个活动上,一家连锁药店的运营总监向我们描述了大数据时代的一个场景:当一个客户进入他们的门店之后,药店的会员数据中心就可以告诉营业员,这个客户是一个什么样类型的人,曾经买过什么、喜欢什么、不喜欢什么等详细的数据,来针对性地为这名客户提供服务。
他甚至提出了一个更“完美”的场景:摄像头放在门口,通过人脸识别技术,用户还没进店营业员就可以获得这些信息。营业员会根据数据中心推荐的数据进行营销,在完成收款之后,所有用户的收款信息都会直接进入会员数据中心,同时也会把相关的消费信息、积分变动等推送给用户。根据用户累积的消费数据,后台会知道每一位用户的偏好,有针对性地发送一些优惠券, 甚至于健康关怀等等,完成这样一个闭环。
从商家的角度来说,这样的“闭环”看上去确实很完美,但是对用户来说,当你甚至没有跨进一家商店的门槛,自己的购物历史、习惯、偏好等信息都已经尽在商家的掌握之中,而且这还是一家连锁药店,这就非常可怕了。
从生产和销售的企业的角度来说,通过大数据预测用户的需求,然后合理地安排生产和上市,对整个社会资源配置来说是有积极意义的,药店根据用户的偏好去推荐产品也无可厚非。但是,对个人用户来说,搜集具体的某个人的个人数据就是另外一个层面的事情了。药店知道顾客的疾病情况可能更有利于向用户推荐合适的药品,然而大多数人显然并不会希望自己的疾病信息如此轻易地被人知道,即使只是被药店的销售员知道而已,即使并不是什么“隐疾”。在这个药店“完美”的场景中,用户的隐私被彻底地忽略了。
缺少法律保障
在这样一个大数据泛滥的时代,如何保护自己的隐私,如何限制企业去使用用户的个人数据是非常重要的问题。
数据显示,2016 年,全国公安机关共侦破网络侵犯公民个人信息案件2100 多起,查获公民个人信息500多亿条,抓获犯罪嫌疑人5000多人,而这可能还只是冰山一角。
最近,监管层也开始对大数据乱象出手,开始清理行动,多家大数据公司被列入调查名单。国内互联网黑色产业链一直非常发达,相对欧美国家,国内在欺诈、黑客层面因为违法犯罪成本很低,形势更为严峻。对个人用户来说,个人信息安全意识觉醒目前主要是在一二线城市少数的公民是有个人信息保护意识的,广大农村乡镇区域对此并不敏感,甚至会随意出借身份证等个人证件。
在法治层面上,中国信息安全立法也一直相对滞后。在民法中,并没有个人信息权的概念, 对个人信息的民法保护依据主要见于民法关于人格权、名誉权、隐私权以及侵权责任法等方面的规定。
在2012 年的《全国人大关于加强网络信息保护的决定》发布后,中国网络安全与信息化立法开始加速,对个人信息安全的保护也开始逐步提升。
今年5 月9 日,最高人民法院和最高人民检察院合发布《关于办理侵犯公民个人信息刑事案件适用法律若干问题的解释》,对《刑法》二百五十三条作出了详细说明,并从“公民个人信息范围”、“情节严重认定标准”、“严打内鬼”、“非法购买”、“收受个人信息获利”等方面对该条款作出详细解释。
此次发布的司法解释首先明确了“公民个人信息”的范围,是指以电子或者其他方式记录的能够单独或者与其他信息结合识别特定自然人身份或者反映特定自然人活动情况的各种信息,包括姓名、身份证件号码、通信通讯联系方式、住址、账号密码、财产状况、行踪轨迹等。
今年6 月1 日正式实施的《网络安全法》仅仅用了两年半时间从列入立法计划到正式出台;在传统法律的制定、修订工作中,也给予网络空间前所未有关注。
如何规范使用数据
虽然目前还存在不少问题,但是大数据行业的发展却也是大势所趋,问题的关键在于大数据行业如何规范化发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23