京公网安备 11010802034615号
经营许可证编号:京B2-20210330
图像处理之Harris角度检测算法
Harris角度检测是通过数学计算在图像上发现角度特征的一种算法,而且其具有旋转不
变性的特质。OpenCV中的Shi-Tomasi角度检测就是基于Harris角度检测改进算法。
基本原理:
角度是一幅图像上最明显与重要的特征,对于一阶导数而言,角度在各个方向的变化是
最大的,而边缘区域在只是某一方向有明显变化。一个直观的图示如下:
数学原理:
基本数学公式如下:
其中W(x, y)表示移动窗口,I(x, y)表示像素灰度值强度,范围为0~255。根据泰勒级数
计算一阶到N阶的偏导数,最终得到一个Harris矩阵公式:
根据Harris的矩阵计算矩阵特征值,然后计算Harris角度响应值:
其中K为系数值,通常取值范围为0.04 ~ 0.06之间。
算法详细步骤
第一步:计算图像X方向与Y方向的一阶高斯偏导数Ix与Iy
第二步:根据第一步结果得到Ix^2 , Iy^2与Ix*Iy值
第三步:高斯模糊第二步三个值得到Sxx, Syy, Sxy
第四部:定义每个像素的Harris矩阵,计算出矩阵的两个特质值
第五步:计算出每个像素的R值
第六步:使用3X3或者5X5的窗口,实现非最大值压制
第七步:根据角度检测结果计算,最提取到的关键点以绿色标记,显示在原图上。
程序关键代码解读:
第一步计算一阶高斯偏导数的Ix与Iy值代码如下:
filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION); BufferedImage xImage = filter.filter(grayImage, null); getRGB( xImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width); filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION); BufferedImage yImage = filter.filter(grayImage, null); getRGB( yImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width);
关于如何计算高斯一阶与二阶偏导数请看这里:
http://blog.csdn.net/jia20003/article/details/16369143
http://blog.csdn.net/jia20003/article/details/7664777
第三步:分别对第二步计算出来的三个值,单独进行高斯
模糊计算,代码如下:
private void calculateGaussianBlur(int width, int height) { int index = 0; int radius = (int)window_radius; double[][] gw = get2DKernalData(radius, sigma); double sumxx = 0, sumyy = 0, sumxy = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix whm = harrisMatrixList.get(index2); sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient()); sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient()); sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy()); } } index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); hm.setXGradient(sumxx); hm.setYGradient(sumyy); hm.setIxIy(sumxy); // clean up for next loop sumxx = 0; sumyy = 0; sumxy = 0; } } }
第六步:非最大信号压制(non-max value suppression)
这个在边源检测中是为了得到一个像素宽的边缘,在这里则
是为了得到准确的一个角点像素,去掉非角点值。代码如下:
/*** * we still use the 3*3 windows to complete the non-max response value suppression */ private void nonMaxValueSuppression(int width, int height) { int index = 0; int radius = (int)window_radius; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double maxR = hm.getR(); boolean isMaxR = true; for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix hmr = harrisMatrixList.get(index2); if(hmr.getR() > maxR) { isMaxR = false; } } } if(isMaxR) { hm.setMax(maxR); } } } }
运行效果:
程序完整源代码:
package com.gloomyfish.image.harris.corner; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; import com.gloomyfish.filter.study.GrayFilter; public class HarrisCornerDetector extends GrayFilter { private GaussianDerivativeFilter filter; private List<HarrisMatrix> harrisMatrixList; private double lambda = 0.04; // scope : 0.04 ~ 0.06 // i hard code the window size just keep it' size is same as // first order derivation Gaussian window size private double sigma = 1; // always private double window_radius = 1; // always public HarrisCornerDetector() { filter = new GaussianDerivativeFilter(); harrisMatrixList = new ArrayList<HarrisMatrix>(); } @Override public BufferedImage filter(BufferedImage src, BufferedImage dest) { int width = src.getWidth(); int height = src.getHeight(); initSettings(height, width); if ( dest == null ) dest = createCompatibleDestImage( src, null ); BufferedImage grayImage = super.filter(src, null); int[] inPixels = new int[width*height]; // first step - Gaussian first-order Derivatives (3 × 3) - X - gradient, (3 × 3) - Y - gradient filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION); BufferedImage xImage = filter.filter(grayImage, null); getRGB( xImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width); filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION); BufferedImage yImage = filter.filter(grayImage, null); getRGB( yImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width); // second step - calculate the Ix^2, Iy^2 and Ix^Iy for(HarrisMatrix hm : harrisMatrixList) { double Ix = hm.getXGradient(); double Iy = hm.getYGradient(); hm.setIxIy(Ix * Iy); hm.setXGradient(Ix*Ix); hm.setYGradient(Iy*Iy); } // 基于高斯方法,中心点化窗口计算一阶导数和,关键一步 SumIx2, SumIy2 and SumIxIy, 高斯模糊 calculateGaussianBlur(width, height); // 求取Harris Matrix 特征值 // 计算角度相应值R R= Det(H) - lambda * (Trace(H))^2 harrisResponse(width, height); // based on R, compute non-max suppression nonMaxValueSuppression(width, height); // match result to original image and highlight the key points int[] outPixels = matchToImage(width, height, src); // return result image setRGB( dest, 0, 0, width, height, outPixels ); return dest; } private int[] matchToImage(int width, int height, BufferedImage src) { int[] inPixels = new int[width*height]; int[] outPixels = new int[width*height]; getRGB( src, 0, 0, width, height, inPixels ); int index = 0; for(int row=0; row<height; row++) { int ta = 0, tr = 0, tg = 0, tb = 0; for(int col=0; col<width; col++) { index = row * width + col; ta = (inPixels[index] >> 24) & 0xff; tr = (inPixels[index] >> 16) & 0xff; tg = (inPixels[index] >> 8) & 0xff; tb = inPixels[index] & 0xff; HarrisMatrix hm = harrisMatrixList.get(index); if(hm.getMax() > 0) { tr = 0; tg = 255; // make it as green for corner key pointers tb = 0; outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb; } else { outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb; } } } return outPixels; } /*** * we still use the 3*3 windows to complete the non-max response value suppression */ private void nonMaxValueSuppression(int width, int height) { int index = 0; int radius = (int)window_radius; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double maxR = hm.getR(); boolean isMaxR = true; for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix hmr = harrisMatrixList.get(index2); if(hmr.getR() > maxR) { isMaxR = false; } } } if(isMaxR) { hm.setMax(maxR); } } } } /*** * 计算两个特征值,然后得到R,公式如下,可以自己推导,关于怎么计算矩阵特征值,请看这里: * http://www.sosmath.com/matrix/eigen1/eigen1.html * * A = Sxx; * B = Syy; * C = Sxy*Sxy*4; * lambda = 0.04; * H = (A*B - C) - lambda*(A+B)^2; * * @param width * @param height */ private void harrisResponse(int width, int height) { int index = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double c = hm.getIxIy() * hm.getIxIy(); double ab = hm.getXGradient() * hm.getYGradient(); double aplusb = hm.getXGradient() + hm.getYGradient(); double response = (ab -c) - lambda * Math.pow(aplusb, 2); hm.setR(response); } } } private void calculateGaussianBlur(int width, int height) { int index = 0; int radius = (int)window_radius; double[][] gw = get2DKernalData(radius, sigma); double sumxx = 0, sumyy = 0, sumxy = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix whm = harrisMatrixList.get(index2); sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient()); sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient()); sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy()); } } index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); hm.setXGradient(sumxx); hm.setYGradient(sumyy); hm.setIxIy(sumxy); // clean up for next loop sumxx = 0; sumyy = 0; sumxy = 0; } } } public double[][] get2DKernalData(int n, double sigma) { int size = 2*n +1; double sigma22 = 2*sigma*sigma; double sigma22PI = Math.PI * sigma22; double[][] kernalData = new double[size][size]; int row = 0; for(int i=-n; i<=n; i++) { int column = 0; for(int j=-n; j<=n; j++) { double xDistance = i*i; double yDistance = j*j; kernalData[row][column] = Math.exp(-(xDistance + yDistance)/sigma22)/sigma22PI; column++; } row++; } // for(int i=0; i<size; i++) { // for(int j=0; j<size; j++) { // System.out.print("\t" + kernalData[i][j]); // } // System.out.println(); // System.out.println("\t ---------------------------"); // } return kernalData; } private void extractPixelData(int[] pixels, int type, int height, int width) { int index = 0; for(int row=0; row<height; row++) { int ta = 0, tr = 0, tg = 0, tb = 0; for(int col=0; col<width; col++) { index = row * width + col; ta = (pixels[index] >> 24) & 0xff; tr = (pixels[index] >> 16) & 0xff; tg = (pixels[index] >> 8) & 0xff; tb = pixels[index] & 0xff; HarrisMatrix matrix = harrisMatrixList.get(index); if(type == GaussianDerivativeFilter.X_DIRECTION) { matrix.setXGradient(tr); } if(type == GaussianDerivativeFilter.Y_DIRECTION) { matrix.setYGradient(tr); } } } } private void initSettings(int height, int width) { int index = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix matrix = new HarrisMatrix(); harrisMatrixList.add(index, matrix); } } } }
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22