京公网安备 11010802034615号
经营许可证编号:京B2-20210330
图像处理之基于图的广度优先搜索组件标记算法
一:图的遍历与广度优先搜索算法
图的遍历算法最常用是广度优先搜索算法(BFS)与深度优先搜索算法(DFS),从一个的
节点开始,访问相邻的所有子节点,接着从这些子节点出发访问下个相邻子节点,如
此重复直到所有节点都被访问。
二:二值图像组件标记实现流程
如果把图像的每个像素点看成为图的一个节点,则二值图像中的每个连通区域都可以
看成一个无向图,只要遍历图像中的每个像素点就可以找出每个连通区域,实现对二
值图像连通区域组件的标记。大致步骤为:
1. 扫描图像的每个像素点,获得位置信息与图像的灰度值强度(0~255)成为图的节点
2. 对每个节点,初始化状态与获取它的上下左右四个邻域节点
1. 遍历每个节点- BFS
2. 输出结果与显示
三:运行效果
四:关键程序实现代码
图的搜索算法,节点状态有三种,未访问(Unvisit),已经访问(Visited),已经标记(Marked)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
package com.gloomyfish.image.watershed;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* Breath First Search for graphics
* @author gloomyfish
*
*/
public class BFSAlgorithm {
private List<PixelPoint> pixelList = null;
private int grayLevel = 1;
public int getGrayLevel() {
return grayLevel;
}
public int getTotalOfLabels()
{
Map<Integer, Integer> labelMap = new HashMap<Integer, Integer>();
for(PixelPoint p : pixelList)
{
if(p.getValue() >= grayLevel)
{
if(labelMap.containsKey(p.getLabel()))
{
Integer count = labelMap.get(p.getLabel());
count += 1;
labelMap.put(p.getLabel(), count);
}
else
{
labelMap.put(p.getLabel(), new Integer(1));
}
}
}
Integer[] keys = labelMap.keySet().toArray(new Integer[0]);
for(Integer key : keys)
{
System.out.println("Label index : " + key);
}
System.out.println("total labels : " + labelMap.size());
return labelMap.size();
}
public void setGrayLevel(int grayLevel) {
this.grayLevel = grayLevel;
}
public BFSAlgorithm(List<PixelPoint> pixelList)
{
this.pixelList = pixelList;
grayLevel = 1; // front color - target pixel
}
public void process()
{
if(this.pixelList == null) return;
int label = 1;
for(PixelPoint pp : pixelList)
{
if(pp.getValue() >= grayLevel)
{
if(pp.getStatus() == PixelPoint.UNMARKED)
{
pp.setStatus(PixelPoint.VISITED);
pp.setLabel(label);
MyQueue mq = new MyQueue(10000);
for(PixelPoint npp : pp.getNeighbours())
{
if(npp.getStatus() == PixelPoint.UNMARKED && npp.getValue() >= grayLevel)
{
npp.setStatus(PixelPoint.MARKED);
mq.enqueue(npp);
}
}
while(!mq.isEmpty())
{
PixelPoint obj = (PixelPoint)mq.dequeue();
if(obj.getStatus() == PixelPoint.MARKED)
{
obj.setLabel(label);
obj.setStatus(PixelPoint.VISITED);
}
for(PixelPoint nnpp : obj.getNeighbours())
{
if(nnpp.getStatus() == PixelPoint.UNMARKED && nnpp.getValue() >= grayLevel)
{
nnpp.setStatus(PixelPoint.MARKED);
mq.enqueue(nnpp);
}
}
}
label++;
}
}
}
}
}
|
图像组件标记算法代码:
|
1
2
3
4
5
6
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01