
图像处理之基于图的广度优先搜索组件标记算法
一:图的遍历与广度优先搜索算法
图的遍历算法最常用是广度优先搜索算法(BFS)与深度优先搜索算法(DFS),从一个的
节点开始,访问相邻的所有子节点,接着从这些子节点出发访问下个相邻子节点,如
此重复直到所有节点都被访问。
二:二值图像组件标记实现流程
如果把图像的每个像素点看成为图的一个节点,则二值图像中的每个连通区域都可以
看成一个无向图,只要遍历图像中的每个像素点就可以找出每个连通区域,实现对二
值图像连通区域组件的标记。大致步骤为:
1. 扫描图像的每个像素点,获得位置信息与图像的灰度值强度(0~255)成为图的节点
2. 对每个节点,初始化状态与获取它的上下左右四个邻域节点
1. 遍历每个节点- BFS
2. 输出结果与显示
三:运行效果
四:关键程序实现代码
图的搜索算法,节点状态有三种,未访问(Unvisit),已经访问(Visited),已经标记(Marked)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
package com.gloomyfish.image.watershed;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* Breath First Search for graphics
* @author gloomyfish
*
*/
public class BFSAlgorithm {
private List<PixelPoint> pixelList = null;
private int grayLevel = 1;
public int getGrayLevel() {
return grayLevel;
}
public int getTotalOfLabels()
{
Map<Integer, Integer> labelMap = new HashMap<Integer, Integer>();
for(PixelPoint p : pixelList)
{
if(p.getValue() >= grayLevel)
{
if(labelMap.containsKey(p.getLabel()))
{
Integer count = labelMap.get(p.getLabel());
count += 1;
labelMap.put(p.getLabel(), count);
}
else
{
labelMap.put(p.getLabel(), new Integer(1));
}
}
}
Integer[] keys = labelMap.keySet().toArray(new Integer[0]);
for(Integer key : keys)
{
System.out.println("Label index : " + key);
}
System.out.println("total labels : " + labelMap.size());
return labelMap.size();
}
public void setGrayLevel(int grayLevel) {
this.grayLevel = grayLevel;
}
public BFSAlgorithm(List<PixelPoint> pixelList)
{
this.pixelList = pixelList;
grayLevel = 1; // front color - target pixel
}
public void process()
{
if(this.pixelList == null) return;
int label = 1;
for(PixelPoint pp : pixelList)
{
if(pp.getValue() >= grayLevel)
{
if(pp.getStatus() == PixelPoint.UNMARKED)
{
pp.setStatus(PixelPoint.VISITED);
pp.setLabel(label);
MyQueue mq = new MyQueue(10000);
for(PixelPoint npp : pp.getNeighbours())
{
if(npp.getStatus() == PixelPoint.UNMARKED && npp.getValue() >= grayLevel)
{
npp.setStatus(PixelPoint.MARKED);
mq.enqueue(npp);
}
}
while(!mq.isEmpty())
{
PixelPoint obj = (PixelPoint)mq.dequeue();
if(obj.getStatus() == PixelPoint.MARKED)
{
obj.setLabel(label);
obj.setStatus(PixelPoint.VISITED);
}
for(PixelPoint nnpp : obj.getNeighbours())
{
if(nnpp.getStatus() == PixelPoint.UNMARKED && nnpp.getValue() >= grayLevel)
{
nnpp.setStatus(PixelPoint.MARKED);
mq.enqueue(nnpp);
}
}
}
label++;
}
}
}
}
}
|
图像组件标记算法代码:
1
2
3
4
5
6
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29