
大数据市场现状综述
大数据计算和分析系统作为一种计算机科学发展到一定阶段的必然产物已经吸引了各行各业的关注,学术界和业界都已经参与到大数据分析系统的构建中来,越来越多的公司开始拥有或租用数据分析平台。大数据分析技术为从海量的数据中挖掘有价值的信息提供了可能性。
国外各式各样的网络服务商、软硬件服务商几乎都投入到了云计算、云服务,这说明面对每年不断增长的海量数据,各大企业都希望能够对这些数据加以利用,以适应大数据时代的步伐。而云计算、云服务的商业价值也由此可见一斑,各大公司都想从中分一杯羹。
“大数据”时代,在选择应用互联网等高新技术的那一刻开始,用户在自觉不自觉的情况下就已经把很大一部分个人信息放在“光天化日”之下。每一次面对网站/ 应用程序,需要填写邮箱、密码等信息,以及需要阅读的那一长串的用户协议时,关于隐私权的那一小方块文字,就算有意自我保护,但也很难权衡。不管是Google,Facebook,Amazon还是国内BAT三大巨头,爆炸式增长的信息, 从“分享(Sharing)”到“个性(Personalization)”的趋势呈现,互联网企业所掌握的数据基本上涵盖了大多数人生活的绝大一部分。在过去的互联网发展中, 更多的关注是如何利用互联网平台,收集更多的数据;而发展至今,面对已然收集到位的海量信息,如何利用这些数据本身,不仅成为了一个商业模式的判断,同样也是一个社会道德的判断,甚至在某种意义上成为相应的行业乃至法律规范。
中国的大数据市场,最好应该由国内公司来控制,这就要求我们快速提升自我的数据存储、数据分析和对用户提供云服务的能力。让本国的市场,由本土企业最大程度的掌控。
中小企业medium-size enterprise(SEMs)是促进我国社会经济飞速发展的中流砥柱,是我国经济稳定和快速发展的极其重要的因素。就目前形势而言,它与大型企业相比较来看,中小企业随着企业规模的不断增大,其管理手段却跟不上企业发展壮大的步伐,管理层次产生的问题陆续凸现出来。于中小企业而言,在大数据时代到来之际信息被价值化势在必行,但是目前效果却不尽如人意。追根究底,主要原因是中小企业资金有限,技术人才匮乏。早期存在的数据挖掘产品目前已经很难再满足中小企业的信息化需求。向企业提供数据挖掘云服务的模式能够满足中小企业信息被价值化的需求并帮助企业做出正确的决策。
操作系统软件产品的开发和研究技术为基础的云计算服务的发展提供了前期的技术支持。在基于云计算服务的软件产品和服务器系统的技术,中国已经突破EB的数据存储系统级硬件和软件技术支持,并同时支持亿级的数据处理任务。与此同时,互联网企业在大规模云服务操作系统取得了很大的突破。国家也及将很多城市确立为中国云计算服务创新发展试点,例如政治中心北京、经济中心上海、经济中心深圳和一些经济和科技发展比较快的城市例如杭州和武汉。
武汉泰迪智慧科技公司立足自主研发,通过不断的技术创新,拥有完全自主知识产权,意在打造一个全方位的质量服务器,能完全满足在互联网行业从超级计算机应用到普通PC服务器的高校、金融、医疗等行业需求的用户,公司自主研发的AInspir分布式机器学习平台就是一个通用的大数据处理分析平台。平台应用了Hadoop技术以支持海量数据的快速处理与运算,同时通过将常用的数学模型集成到平台上,让用户可以自由建模,处理数据也变得方便快捷。
阿里云在2013年对"飞天"平台推出了一系列举措。包括低口槛进入云战略,支持一些新的服务平台的开发者。从产品、价格、服务几方面与第H方合作,打破传统的商业模式,从用户思维至上,创新的云服务,云计算的角度建立一个更健康的生态系统。2013阿里云推出"飞天5K集群"项目取得重大成功。
百度MapReduce(BMR),百度的MapReduce提供云端托管的全找Hadoop/Spark/HBase服务,助力客户快速具备海量数据分析和挖掘能力。
华为坚持弹性云计算服务,如引进FusionCloud云战略,云数据中心,云计算产品,云服务解决方案的概念。"信息通信技术的硬件和软件基础设施,顶层设计咨询服务和第H方应用程序智能城市共同发展"是华为企业业务的三个主要方向,基于云计算的数据中心、,实现"云-管-端"分层结构,可以构建面向未来的架构的城市。
国内这些云服务平台绝大部分是为了实现自身公司的商业化战略应运而生的。提供云计算云服务的技术层出不穷,在经过大量的技术调研之后发现,基于Hadoop的大数据平台是所有大数据技术框架耗成本比较小的方法,它以-种可靠(reliable)、高效(efficient)、可伸缩(adjustable)的方式进行数据处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29