
整合信用大数据 打牢经济“基础桩”
“全面、准确的信用数据是建设社会信用体系的基本要素。中国经济的突飞猛进和互联网的发展催生了海量的信用数据,传统的技术手段无法满足庞大复杂的数据整合要求,需要使用大数据技术进行收集和分析,形成更加客观的信用评价体系。”第十二届全国人大代表、浪潮集团董事长兼CEO孙丕恕提出要基于大数据技术,整合政府、机构组织数据并纳入互联网数据,形成全国统一的综合信用数据资源平台,积极培育企业征信等大数据征信产业,分步骤建成全面、统一的社会信用信息体系,为中国社会主义市场经济的发展打牢“基础桩”。
孙丕恕说,政府对大数据在社会信用体系中的建设高度重视。去年7月25日,李克强总理在浪潮集团考察时,现场办公,要求相关部门以云计算、大数据理念,与企业信息技术平台有机对接,建立统一综合信用信息平台,实现“大数据”共享。7月23日,总理在国务院常务会议上也强调构建企业信用信息公示系统,包括国家社会信用信息平台,都要融入“大数据”的思维理念。国家各部委和地方政府也在积极运用大数据技术建设不同领域的信用信息系统,如国家工商总局打造全国企业信用信息公示系统,山东省建设“一网三库一平台”公共信用信息系统等。
那么,我国社会信用体系建设现状如何呢?孙丕恕介绍说,2014年可谓是我国社会信用体系建设的重要一年,不仅出台了《社会信用体系建设规划纲要(2014—2020年)》,国家发改委下发了《社会信用体系建设三年重点工作任务(2014—2016)》,明确提出要制定法律法规和标准体系,对信用信息平台建设和分享等重点工作进行了分工,形成了明确的顶层设计和行动规划。
“这些政策为运用大数据技术加快社会信用体系建设奠定了基础。但在实际推进中,仍需解决条块分割问题,避免出现新的信息孤岛;注重节约成本,实现原有信息资源的复用;丰富信用数据源,保证信用评价的全面性。”孙丕恕表示,国家虽然出台了一系列政策,但在具体实施过程中,仍然面临着一些问题。
为此,孙丕恕建议从组织数据和互联网数据两个方面整合融合入手。首先由政府专门机构整合现有政务业务系统的信用数据,建设基于政府数据的区域、行业信用数据资源平台;然后将金融、商务等层面的商业征信组织数据进行整合,形成区域、行业综合信用数据资源平台;在此基础之上,依托大数据分布式、海量处理技术,按照国家统一的分类目录和数据标准,以及系统间的数据交换机制,将各信用信息平台的数据进行逻辑集中,进行标准化的分类、归并,形成可利用的全国统一信用数据资源平台。
孙丕恕强调,信用数据散落在工商、税务、统计、海关等各业务系统中,政府可以利用大数据技术,在不新建系统的前提下,充分利用原有信息资源,进行各部门内部系统信用数据以及各部门系统间的信用数据整合,这样既能节约成本也能加快建设速度,一举两得。”
孙丕恕还提出了运用大数据技术采集电子商务、社交数据、媒体信息、网络行为、互动评价等互联网公开信息,建设信用数据第二轨的建议。他说,当前信用数据的来源不再局限于传统的财务、信贷、保险、信用历史等传统领域和组织内数据,更扩展到电子商务、社交数据、网络行为等领域。
鉴于此,孙丕恕主张将互联网数据纳入综合信用信息平台中,建立覆盖全社会的信用信息系统。“利用大数据技术萃取互联网中的高价值信用数据,并通过组织内数据和互联网数据的比对,挖掘信用信息之间的关联性,描绘信用主体信用全貌,能够通过更全面的数据来综合评判信用主体,实现数据的全面性和数据保真。”
此外,针对目前由于数据权属关系不清而导致的信用数据采集难题,孙丕恕表示,由于国家也没有相应的制度来保障,建议通过政府授权和市场化手段来规范数据的采集,对于纳入政府信用信息平台的数据,由政府依据有关法规、参照信用信息采集目录,授权大数据采集机构予以采集,其他情况则可以通过市场化的手段来解决。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12