京公网安备 11010802034615号
经营许可证编号:京B2-20210330
税务领域大数据如何应用
一 、税务大数据产生背景
1.金税工程三期的发展
"金税工程"三期属于国家级信息系统工程,统一全国国地税征管系统,搭建统一纳税服务平台,实现全国税收数据大采集。金税三期2013年部分地区试点,2016年底前全国上线,为税改提供强大的数据支持。
2.互联网+税务的推动
在目前"互联网+"时代背景下,云计算、人工智能、GigData、互联网、物联网等已成为当下行业战略资源。
大数据的处理与应用、多方共享,即可加强税局税收征管,同时也可通过数据分析,为纳税人提供更好的创新服务。
3.信息化是时代的需要
虽然我国已迈入信息化管理阶段,但我国税局系统大部分仅为内部共享,不能实现全过打通,甚至部门省市当地国地税均无法实现信息共享,税务信息化的发展,将全国税务系统打通,及时掌握纳税人经济业务和税收的来龙去脉,让偷逃税行为扼杀在摇篮。
二 、税务大数据的意义
1.提升征管效率
通过对纳税人数据的采集,强化大数据分析,纳税人历史行为、最新动态呈现在税务征管管理者面前,从而可以提升征管与服务;经过数据比对与分析,实时监控纳税人三流问题,从而提高纳税人尊从度,防止偷逃税,同时也可作为纳税人信用等级评定基础依据。
2.数据驱动创新
在历史税收信息化来看,税收信息共享没有得到有效利用,如与工商部门信息共享("五证合一"的目的之一),目前通过 Data Sharing ,可以摆脱滞后的传统数据分析,提高对错综复杂数据持续分析,进行风险评估、决策支持、预案制定等,使税务征管、稽查部门保持持续应变与创新能力。 三、大数据的应用
1.互联网+发票
金税三期、新防伪税控系统,将对增值税发票票面信息(包括纳税人名称、数量、单价、税率、税额等)进行全面采集,发票在线开具数据实时传送,离线开票需在规定时间上传,否则导致无法开票。纳税人发票信息采集,税务征管将对发票信息深度分析、挖掘,快速、全面将纳税人经营情况反馈与呈现,切实加强后续管理,防范征管漏洞。
2.电子税局——O2O办税
受电子商务高质量服务的影响,电子税务局上线也形成了线上(Online)受理到线下(Offline)办理的O2O(线上线下)的纳税服务新模式。 四、税务大数据带来的机遇与挑战 1.机遇
Big Data 与"大规模数据"一脉相承,其数据体量、复杂性远超过传统数据。税务数据不再仅仅是处理对象,而是一种资源,甚至可以说是资产。对于庞大的数据系统,数据支持者或提供给决策者来讲,数据魔方、分析模型显得尤为重要,我们需要熟练高效的对动态数据进行自我调整、矫正分析等。
以前,税务征管数据就是"税务信息孤岛",无法给各部门进行交换共享或交叉检查,税务大数据时代的到来,使得涉税信息交换平台和公共信用信息平台互通,政府部门深度信息融合,数据多方比对,差异逐渐发现,征管更加清晰。
2.挑战
平台挑战:由于税务大数据平台建设涉及到多个政府部门,所以税务大数据平台建设、形成大数据解决方案、进行可视化数据分析极具挑战性.........
安全挑战:税务数据信息庞大,如:纳税人报送信息、税务机关掌握信息、其他平台方涉及信息等安全性存在较大隐患.........
人才挑战:应高度重视"互联网+税务"人才培养的重要性,加强系统化培训学习,利用互联网提高征管水平,使用征管过程中能高效对涉水数据搜集、研究、深度挖掘等。
3.税务大数据存在问题
在税局大数据提供便利的同时,涉税数据安全需要得到保障——信息安全政策不完善;
征管软件、系统不统一(征管系统、纳税评估系统、税总软件系统、地方软件系统等)导致信息重复,效率不高——税务大数据整合不到位;
数据运用不彻底、大数据认知不够,仍旧基于传统数据分析处理——大数据思维缺乏。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06