京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据驱动下的消费金融
当“大数据”开始进入各行各业的视线,互联网消费金融公司也开始利用手中的大数据谋求更广阔的业务布局。
年轻群体因收入与消费的矛盾产生信贷需求,传统金融机构的部分缺席为互联网金融创造了发展空间。移动端可以随时随地对消费者的消费需求产生回应,科技发展重塑风控,这些与未被满足的需求产生碰撞,于是2013年互联网消费金融应运而生。
如今,经过四年的发展,互联网消费金融呈现爆发式增长的趋势,艾瑞咨询发布的《2017消费金融洞察报告》显示,互联网消费金融从2013年开始到2016年,其交易规模从60亿增长到了4367.1亿,年均复合增长率达到了317.5%。如此累积下来的大量数据将被如何运用呢?
数据驱动
对于消费金融而言,数据和技术在一定程度上正在改变着风控和获客效率。大数据风控,通过运用大数据构建模型的方法对借款人进行风险控制和风险提示,避开传统风控的劣势,发挥最大优势更精准地对业务进行支持和维护。
随着互联网技术不断发展,传统的风控手段已逐渐不能支撑机构的业务扩展;而依托于大数据的风控技术对多维度、大量数据的智能处理,批量标准化的执行流程,更能贴合信息发展时代风控业务的发展要求。“与原有借款主体进行经验式风控不同,通过采集大量借款人或借款企业的各项指标进行数据建模的大数据风控更为科学有效。”中央财经大学金融学院教授刘向丽对《中国经济信息》记者分析。
数据驱动下的风险定价是消费金融企业的核心能力之一。京东金融消费者金融事业部总经理区力在接受《中国经济信息》采访时回顾,过去三年中,京东金融做了大量的数据、研发和系统的投入,这些投入是固定成本,每一单金融服务的操作成本则是变动成本。“比如‘白条’业务,我们没有一笔是通过人工审核,都是机器决策,这样子每单的变动成本近乎为零,我们的后台系统1秒钟可以处理几十万笔交易,这在过去的金融服务模式中是不可想像的。”区力说。现在“白条”信用风险评估模型覆盖了两亿多个京东用户,而且每一个数据模型体系中都有上百个子模型,几万个变量。
区力向《中国经济信息》记者表示,京东金融目前已经构建了自身的核心壁垒,即数据驱动下的风险定价能力,具备了获取各种不同维度数据源能力,以及数据技术能力和数据模型产品能力。
与此同时,京东金融凭借在数据领域进行广泛的投资以快速占位。公开资料显示,京东金融已经投资了ZestFinance、聚合数据、数库、聚信力等多个数据公司,这其中包括数据银行、数据挖掘、机器学习等不同的类型公司。
赵国庆则对自己创立的马上消费金融公司冠以“典型的大数据公司”的头衔。
目前,马上消费金融拥有的技术和大数据团队人员占据公司总人数的2/3,体现了鲜明的新型金融机构特征。通过采用多种机器学习方法,建立了面对不同业务场景和不同需求的几十个大数据模型,拥有超过10W个数据维度。
区力还透露,依据京东金融2017年确定的“坚持技术持续投入不动摇”战略,下一步京东金融将对于自身数据技术基础方面进行布局。
举例来说,根据京东集团的电商业务的一些用户购物数据,基于相应的模型产品,可以在消费金融业务上为消费者提供相匹配的“白条”额度,或者为其提供专业的针对性理财服务,甚至在众筹业务方面。
当下,互联网消费金融借力大数据大势所趋,业内人士翘首以盼的是,利用大数据将各条业务线的服务、产品、用户打通,为用户提供更加人性化、合理化、科学化服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26