
关于大数据审计环境下审计风险的一些思考
随着信息化技术的高速发展,特别是大数据时代的来临,计算机技术在社会生活各个领域的广泛应用,并深刻影响着审计环境、审计方式、审计技术等诸多方面。如何在保证大数据环境下充分运用信息化技术提高审计水平、质量和效率的同时防范审计风险是审计人员面临的一个重要挑战。本文将对大数据环境下的审计风险做一些简要探索,并提出相应的防控对策。
一、大数据环境下审计风险类型
在大数据环境下,审计风险一般可以分为数据自身风险和审计过程风险两大类,为了确保审计工作质量,提高审计工作水平,审计人员必须采取有效的方法控制或降低审计风险。
(一)数据自身风险
1.数据系统内控有效性。数据是大数据审计的基础和“原料”。在信息系统普遍应用的今天,数据的产生绝大部分来自于相应的信息系统,信息系统内部控制体系不能及时预防或检测出存在的重大错误,内部控制系统缺失是大数据审计所面临的最大风险。
2.数据造假及数据舞弊。在大数据审计环境下,审计人员并不直接参与被审计单位的经济活动,而是以被审计单位提供的财务资料及相关业务数据进行审计,审计的质量完全依赖于所提供信息的真实性和可靠性。一些被审计单位蓄意篡改数据、编制虚假业务流程数据,导致审计人员产生错误的判断,做出偏离事实的审计结论,形成审计风险。
3.数据的规范化水平。在大数据审计环境下,数据的规范性水平直接决定了审计效率。审计面对的行业类型多,相关信息系统数量多、业务流程复杂、数据类型繁杂,数据的结构化水平参差不齐,部分数据存在于手工纸质统计,无法有效转化为电子格式等问题都极大地降低了审计效率。数据的结构化、规范化水平是现阶段大数据审计不能回避的风险。
(二)审计过程风险
1.数据采集与转换。被审计单位纷繁复杂的信息系统产生的业务及财务数据要想成为对审计人员有用的数据,离不开数据的采集和转换。数据的采集转换是大数据审计的主要纽带,是大数据环境下审计成败的关键。当前,审计人员在进行现场数据的采集与转换过程中,普遍存在的问题包括:被审计单位的信息系统与采集模板不匹配,数据采集模板缺乏有效的共享平台,数据采集转换的时间无法准确估计等三个方面,这是大数据审计环境不容忽视的审计风险。
2.数据关联分析。数据采集完成后,审计人员对已采集的数据进行梳理、汇总分析,不同信息系统之间的数据关联性差,这个问题在不同单位、不同行业的信息系统中普遍存在。大数据的价值只有在数据关联、比对分析后方能体现出来。造成这一问题的原因主要有两点,一方面由于被审计单位业务各不相同,审计机关从多个口径获取的数据普遍存在结构不一致、信息不完整、勾稽关系无法对应等问题,数据关联匹配存在障碍。另一方面,由于审计人员自身存在技术瓶颈,思路不够开拓,习惯依靠传统SQL查询语句,未掌握大数据信息抽取、模糊匹配等技术,较难突破数据关联匹配的难题,从而导致审计过程中部分重大问题应发现未发现。
3.数据安全风险。大数据审计环境下,审计人员在开展日常审计业务中,常常忽视数据安全风险。数据安全风险主要包括:一是数据在审计人员间的调取、使用缺乏有效的授权约束机制;二是数据在存储和转移过程中遇到的数据泄密和数据丢失;三是数据在现场审计结束后缺乏统一的数据移交和保密措施。
二、大数据环境下审计风险的防控对策
(一)强化信息系统的内部控制,提升数据规范化水平。现阶段,审计人员应密切关注被审计单位内部信息系统的内控有效性,通过业务穿行测试等措施对被审计单位信息系统的有效性进行合理评估,减少人为因素导致的数据差错,提升信息系统的可靠性、稳定性和安全性;其次是要不断加强对被审计单位业务人员的职业道德教育,提升业务核算能力和水平,不断提升数据存储的规范化水平,切实提升审计现场效率。
(二)加快数据模板采集共享平台建设,提升数据采集效率。审计机关应进一步加强对常见的数据库软件及数据存储软件数据采集模板的集成开发与共享建设,不断丰富数据模板采集平台的内容,逐一编制数据采集操作手册,不断提升审计人员的采集效率。
(三)加大数据审计培训,提升数据分析水平。大数据审计环境下,审计人员的审计思路是决定审计质量的一个重要因素。面对大量的原始数据和表格和有限的现场审计时间,审计人员必须尽快熟悉被审计单位的数据结构,围绕审计目标形成审计工作思路,从纷繁复杂的数据中查找出审计疑点,从而提高审计质量和效率。在大数据审计环境下,要不断加强对审计人员的业务培训,以审计案例、交流研讨及数据分析平台等多种形式,不断丰富审计人员的工作思路,扎实提升数据分析水平。
(四)完善数据保密制度,严防数据泄密。建立大数据审计环境下的数据管理使用制度,审计人员应该在指定的终端登录数据中心进行数据分析,数据审计人员在经过分析后需要下载的中间表和最终表应该经过严格的审批流程后由技术人员进行下载。由于电子数据无形性和脆弱性的固有属性,在使用移动存储设备存储的同时,还应将数据刻制成光盘以作备份。同时,审计人员在使用数据时,还应和数据提供部门签订数据保密协议,保证不对外泄露相关资料。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01