京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物联网下:大数据属于谁
在之前一些文章中,我已经警告过一些组织机构机构可能很快就会遭遇数据问题——被锁定、赶出或以其他方式禁止访问,以有助于优化未来业务的关键新数据源的可能性。
虽然我相信每个数据驱动的组织机构现在就应该开始规划,以避免最终导致数据不足的问题,但这一担忧只是新的大数据、物联网(IoT)世界中出现的很多潜在的数据问题之一。事实上,获得正确数据的问题将变得更为重要,因为我预测今后将出现一个新的战略数据支持规则和流程,不仅仅是管理和保护有价值数据,而且还要确保拥有公司可能需要的所有必要和有效数据,以保持竞争力。
除了避免数据不足之外,数据支持意味着IT还需要考虑如何管理和解决数据隐私与真实性中的关键问题。在这个时代分析中正确使用数据的深入讨论尚在填补空白,且仍然未确定,但IT需要为未来几年出现的任何数据政策作好准备。
真伪还是隐私?
许多人深入探索数据隐私,对于如何最好地平衡数据共享的个人、组织机构或社会效益或者在公共数据和私人数据之间画上红线,我没有任何直接的建议。但是,如果我们从大多数组织机构的角度来看待隐私,那么第一个要求就是要达到规定个人资料控制的法规和合规。这将包括病历、工资和其他人力资源数据。然而,许多商业组织机构保留访问、管理、使用和分享系统中任何东西的权利,还包括由员工存储或创建的任何数据,除非其得到特别保护。
如果从事运输业务,使用来自包裹和卡车上的GPS和其他传感器数据。这看似公平,毕竟卡车司机知道他们的雇主正在监控他们的进展和驾驶习惯。但是当组织机构追踪与IoT设备的互动时会发生什么?
许多人正在努力使GPS在室内进行工作,表面上作为使用WiFi设备和其他设备的公共服务来帮助三角测量手持设备的位置,而实际上为的是实时定位人群,并绘制详细蓝图。
在购物中心,这个跟踪细节从使购物者进入的商店时开始,针对性地展示的广告和优惠以促进交易。业务环境中的这些数据可能会告诉雇主谁在旁边,以及使用者在线查看的时间、收到的电话等等。我们的私人时间是不是也在监控中呢?更不用说这种方式来监控闲暇时间——浴室休息和自动售货机前的选择……但是,如果存在安全风险,这些数据就可能会被取出来分析,或者如果你买了个糖果棒,可以根据数据进行健康指导调整,而一旦有数据存在,就意味着数据可能会泄漏或被盗。
诚然,通过聚合和匿名识别这些数据中的信息,有办法确保一些基本的隐私。但是,我们已经知道真正匿名的大数据是非常困难的。累积的物联网数据可以容易地包含可以与公共数据集相关联的深入嵌入的线索,以此恢复识别信息。
想像你的汽车报告大部分夜晚停在哪里。或者汽车中的智能部件可以在最后一次维修或升级时跟踪。制造离合器的业务可以了解汽车所有者的家庭住址,从而了解他们的身份,以及其旅行模式和驾驶习惯。
数据定义你
问题不在于您的恒温器被黑客入侵,或者烤面包机通过家庭防火墙帮助了攻击者们。更深层次的问题是由机器学习算法进行分析,远远超出了您购买的最近供应商和品牌。想象一下,由于您的电动牙刷最近没有安装新刷头,因此必须支付20%-50%保险费。您可能会因为如何加热或冷却房子而被标记某些政治概况。您可能被设定为高风险贷款,因为每周选择多少次与烤面包和百吉饼有一定关联。 今天,一些供应链已经推动嵌入式监控和主动维护,甚至关联组件来支撑其分析链。
沃尔玛,为供应商提供了一些销售上的透明度,以换取供应商在店内维护自己的库存。这似乎很好,因为我们买了传统商品,一旦我们把它们带回家,就没有对我们进行跟踪。但现在,新智能设备可以保持连续连接并将数据上传到第三方服务上。谁知道不知不觉中产生了多少和我们有关的大数据?
异常强大的大数据存储和分析功能,来自物联网的低级别数据实时流量,越来越多的AI和深度学习,持久性存储器和升级的芯片嵌入式功能(比如加密)已经摆在面前。由于IT团队的任务是对任何新功能进行操作,因此他们应该记住,建立可支持细粒度数据管理的、面向未来的可扩展架构至关重要。
我希望组织机构能发现他们需要创建、存储和使用比今天更多的元数据。此元数据可能包括有关数据使用和访问时间、监管链和出处链接的信息、加密标签、来源可信度、关于可用性的评估,当然也包括通常保留项,敏感性、可访问性与其他监管问题的策略标签。而且,元数据本身就是数据,并且具有自己的访问、隐私和真实性要求,这些需求将递归地传递给元数据。现在令人头疼的时期即将发生。
此外,我敢打赌,未来的数据管理产品将会采用微服务,在更接近数据存储的地方实现数据管理和元数据增强功能。在具有设备级持久存储器和无定形混合云的大型分布式IoT数据世界中,重要数据可能存在于任何地方,并以敏捷而流畅的方式流动。事实上,有些人预测重要数据不仅将只在流中生成,而且只能通过处理和持久性以流形式存在。
如何在任何时候都能运行,如何管理和保证数据的完整性?那么一来,任何元数据(特别是关于隐私、访问和真实性)将不得不随着数据传播。一个有趣的新兴技术是区块链,它已被用作一些新应用程序中的元数据,通过数字签名帮助确保应用程序数据的来源。 元数据管理功能还需要靠近数据,无论它在哪里,无论去哪里。今天,我们发现新出现的存储产品支持嵌入式“lambda功能”,其中实际存储层(如具有事件触发存储过程的数据库)现在可以直接在存储层中执行任意(包括用户定义)函数到存储的数据(和元数据)。
可能需要一段时间才能打造一个积极的、由智能、数据和元数据感知存储的新世界。可能还需要更多的新功能来帮助解决这些问题。例如,由于所有数据都与所有其他数据相关,在某种程度上,最佳的未来管理视图可能是通过图形化元数据库。然而,IT仍然具有相关性,我们必须准备好应对这些新的挑战,使数据中心现代化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01