
物联网下:大数据属于谁
在之前一些文章中,我已经警告过一些组织机构机构可能很快就会遭遇数据问题——被锁定、赶出或以其他方式禁止访问,以有助于优化未来业务的关键新数据源的可能性。
虽然我相信每个数据驱动的组织机构现在就应该开始规划,以避免最终导致数据不足的问题,但这一担忧只是新的大数据、物联网(IoT)世界中出现的很多潜在的数据问题之一。事实上,获得正确数据的问题将变得更为重要,因为我预测今后将出现一个新的战略数据支持规则和流程,不仅仅是管理和保护有价值数据,而且还要确保拥有公司可能需要的所有必要和有效数据,以保持竞争力。
除了避免数据不足之外,数据支持意味着IT还需要考虑如何管理和解决数据隐私与真实性中的关键问题。在这个时代分析中正确使用数据的深入讨论尚在填补空白,且仍然未确定,但IT需要为未来几年出现的任何数据政策作好准备。
真伪还是隐私?
许多人深入探索数据隐私,对于如何最好地平衡数据共享的个人、组织机构或社会效益或者在公共数据和私人数据之间画上红线,我没有任何直接的建议。但是,如果我们从大多数组织机构的角度来看待隐私,那么第一个要求就是要达到规定个人资料控制的法规和合规。这将包括病历、工资和其他人力资源数据。然而,许多商业组织机构保留访问、管理、使用和分享系统中任何东西的权利,还包括由员工存储或创建的任何数据,除非其得到特别保护。
如果从事运输业务,使用来自包裹和卡车上的GPS和其他传感器数据。这看似公平,毕竟卡车司机知道他们的雇主正在监控他们的进展和驾驶习惯。但是当组织机构追踪与IoT设备的互动时会发生什么?
许多人正在努力使GPS在室内进行工作,表面上作为使用WiFi设备和其他设备的公共服务来帮助三角测量手持设备的位置,而实际上为的是实时定位人群,并绘制详细蓝图。
在购物中心,这个跟踪细节从使购物者进入的商店时开始,针对性地展示的广告和优惠以促进交易。业务环境中的这些数据可能会告诉雇主谁在旁边,以及使用者在线查看的时间、收到的电话等等。我们的私人时间是不是也在监控中呢?更不用说这种方式来监控闲暇时间——浴室休息和自动售货机前的选择……但是,如果存在安全风险,这些数据就可能会被取出来分析,或者如果你买了个糖果棒,可以根据数据进行健康指导调整,而一旦有数据存在,就意味着数据可能会泄漏或被盗。
诚然,通过聚合和匿名识别这些数据中的信息,有办法确保一些基本的隐私。但是,我们已经知道真正匿名的大数据是非常困难的。累积的物联网数据可以容易地包含可以与公共数据集相关联的深入嵌入的线索,以此恢复识别信息。
想像你的汽车报告大部分夜晚停在哪里。或者汽车中的智能部件可以在最后一次维修或升级时跟踪。制造离合器的业务可以了解汽车所有者的家庭住址,从而了解他们的身份,以及其旅行模式和驾驶习惯。
数据定义你
问题不在于您的恒温器被黑客入侵,或者烤面包机通过家庭防火墙帮助了攻击者们。更深层次的问题是由机器学习算法进行分析,远远超出了您购买的最近供应商和品牌。想象一下,由于您的电动牙刷最近没有安装新刷头,因此必须支付20%-50%保险费。您可能会因为如何加热或冷却房子而被标记某些政治概况。您可能被设定为高风险贷款,因为每周选择多少次与烤面包和百吉饼有一定关联。 今天,一些供应链已经推动嵌入式监控和主动维护,甚至关联组件来支撑其分析链。
沃尔玛,为供应商提供了一些销售上的透明度,以换取供应商在店内维护自己的库存。这似乎很好,因为我们买了传统商品,一旦我们把它们带回家,就没有对我们进行跟踪。但现在,新智能设备可以保持连续连接并将数据上传到第三方服务上。谁知道不知不觉中产生了多少和我们有关的大数据?
异常强大的大数据存储和分析功能,来自物联网的低级别数据实时流量,越来越多的AI和深度学习,持久性存储器和升级的芯片嵌入式功能(比如加密)已经摆在面前。由于IT团队的任务是对任何新功能进行操作,因此他们应该记住,建立可支持细粒度数据管理的、面向未来的可扩展架构至关重要。
我希望组织机构能发现他们需要创建、存储和使用比今天更多的元数据。此元数据可能包括有关数据使用和访问时间、监管链和出处链接的信息、加密标签、来源可信度、关于可用性的评估,当然也包括通常保留项,敏感性、可访问性与其他监管问题的策略标签。而且,元数据本身就是数据,并且具有自己的访问、隐私和真实性要求,这些需求将递归地传递给元数据。现在令人头疼的时期即将发生。
此外,我敢打赌,未来的数据管理产品将会采用微服务,在更接近数据存储的地方实现数据管理和元数据增强功能。在具有设备级持久存储器和无定形混合云的大型分布式IoT数据世界中,重要数据可能存在于任何地方,并以敏捷而流畅的方式流动。事实上,有些人预测重要数据不仅将只在流中生成,而且只能通过处理和持久性以流形式存在。
如何在任何时候都能运行,如何管理和保证数据的完整性?那么一来,任何元数据(特别是关于隐私、访问和真实性)将不得不随着数据传播。一个有趣的新兴技术是区块链,它已被用作一些新应用程序中的元数据,通过数字签名帮助确保应用程序数据的来源。 元数据管理功能还需要靠近数据,无论它在哪里,无论去哪里。今天,我们发现新出现的存储产品支持嵌入式“lambda功能”,其中实际存储层(如具有事件触发存储过程的数据库)现在可以直接在存储层中执行任意(包括用户定义)函数到存储的数据(和元数据)。
可能需要一段时间才能打造一个积极的、由智能、数据和元数据感知存储的新世界。可能还需要更多的新功能来帮助解决这些问题。例如,由于所有数据都与所有其他数据相关,在某种程度上,最佳的未来管理视图可能是通过图形化元数据库。然而,IT仍然具有相关性,我们必须准备好应对这些新的挑战,使数据中心现代化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01