
大数据应用促进大数据产业落地
随着云计算技术的发展,数据竞争的压力以及互联网环境下社交网络、移动设备等产生的海量数据的冲击,造就了今天大数据的兴盛,同时数据处理技术的发展为全样本数据的处理提供了可能,通过大数据处理技术可以对更多的数据进行科学处理,从而提高了数据分析的科学性、准确性和精确度。可以说,技术的发展是大数据产业发展的主要驱动力。
大数据产业的发展源于大数据应用
近几年随着大数据的持续火热发展,大数据应用冲击着各个行业,为全社会带来了新的思考。大数据产业作为一个新兴产业正席卷而来,并创造出了巨大的价值,成为了当今企业和学者关注的热点问题。
大数据正在成为重要的资产和生产资料。目前,社会、经济、科学、文体及公共卫生等等各个领域,数据驱动发现和决策的趋势已经形成。未来,大数据在推动中国经济转型方面也将发挥重要作用。
通过大数据的分析可以帮助解决中国城镇化发展中面临的住房、教育、交通等难题。例如,通过对交通流量数据的实时采集和分析。可以指导驾驶者选择最佳路线,改善城市贺强交通状况。通过大数据的研究有助于推动钢铁零售等传统产业升级,向价值链高端发展。大数据的应用可以帮助中国在发展战略性新兴产业方面迅速站稳脚跟,巩固并提升竞争优势。
大数据产业的定位和价值实现途径
大数据从数据挖掘、商业智能发展而来,是信息技术发展的必然产物,因此大数据产业其本身属于第三产业;同时大数据产业不能一蹴而就,必须遵循科学的方法循序渐进。大数据产业的发展需要数据科学的支撑,数据科学横跨多个学科领域,要形成对数据的洞察,在数据源及属性的选取、数据模型的选择、所采用的分析及验证方法都需要系统、科学的理论指导和方法论。
首先是业务需求定义阶段,要充分认识到其中蕴藏的机遇和挑战以及大数据在其中能发挥的作用和价值;其次是大数据的应用分析,在这一过程中需对大数据的方方面面做全面的考察和度量,并与业界标杆进行比较,然后紧接着是大数据技术应用架构的设计;再次是大数据技术切人和实施,根据不同的应用场景,选择不同的技术切入模式;最后是大数据的试用、评估以及对成功应用的推广,最终形成一个强大的大数据应用平台。中科点击作为行业大数据应用专家,凭借多年大数据应用实战经验,形成了一套标准化的产品开发模式,已经为汽车、金融、教育、电商、医美等众多行业提供了定制化的大数据服务。
现阶段,新兴的大数据产业通过大数据技术对数据的高速捕获和处理,进而对大量的、类型众多的数据进行分析,以获取信息的价值,提供更优质的服务,在未来大数据产业的价值将得到进一步凸显。
对我国大数据产业发展的建议
首先,在大数据产业应用领域,国内的许多互联网公司已经处于比较好的国际水平,其在大数据应用领域已经开始崭露头角。其次,在大数据产业的技术领域和服务领域,我国企业要明显落后于很多国际企业。基于此,我国应在大数据人才的培养和储备、关键技术的开发和突破、创新体制的开放和优化等方面着重着力,以加快对大数据产业的布局,完善大数据产业发展环境,尽快抢占大数据产业的先机,更好更快推动我国经济在未来的发展。
1.大数据人才的培养和储备。大数据产业的发展离不开数据人才的参与,现阶段数据人才已然成为了各行各业的佼佼者,数据科学家将成为未来最重要的人才之一,因此数据人才的培养和储备就变得尤为重要。
2.关键技术的开发和研究。大数据技术同样是大数据产业发展的重中之重,尤其是在核心技术的开发上,其将成为决定未来大数据产业发展地位的重要因素。因此在大数据行业中,还是要开发出企业自己的核心关键技术,这就需要加大技术研发投入和技术开发力度,并且要加强技术运营、技术维护及技术服务,争取在大数据技术市场中占领一席之地。
3.创新体制的开放和优化。大数据产业的发展要求开源、开放的数据、标准和平台,形成开放的实践和创新体制,因此为使大数据产业更好更快发展,应创建良好的创新体制,鼓励创新、激励创新,不断优化和完善现有的创新体制,形成开放的创新文化。开放的创新文化和优秀的创新体制是保障大数据产业发展的动力和源泉,其可集众人之智、采众人之长,创新新技术、新产品、新模式、新服务,以此来促进大数据产业的创新和良眭发展。
大数据不仅变革了信息技术行业本身,同时引发其他产业价值链的重构,整个商业乃至社会的逻辑和规则正在被改写;同时对大数据的利用并非短时间内就可以完全解决,大数据产业的发展也不可能一蹴而就,在未来可能会遇到更多的挑战,不管是政府、企业、科研机构甚至是个人,都应积极应对大数据所带来的挑战,把握机遇,使大数据产业朝着健康的方向发展,以此为依托来创建属于人类的智慧社区、智慧城市、智慧国度、智慧地球。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10