京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习基本原理和概念
1. VC dimension(VC维,非常重要的概念)
能够shutter 二分类问题的上限。也是衡量模型复杂度的工具(类似自由度的概念)。之所以这个概念比较重要是它能够解释为什么机器能够学习。
1),以概率统计中常用的手段:用sample来估计整体,机器学习也是如此,就是说,通过对采样得到的sample进行学习,能够用来对out of sample进行估计、处理、预测、分类等等。所谓的学习就是从一堆Hypothesis(set)中,利用sample,通过learning algorithm赛选出合适的hypothesis - g的过程。
2)塞选的标准通常是各种类型的error(0/1error,square error...),这些误差是用来调节W权重,最后得到比较小Error (in sample)的hypothesis(g)。
3)这个g只是在in sample上表现比较好,其实在in sample上表现好并没什么卵用,因为如果你只是处理in sample数据的话就没有必要进行机器学习,之所以使用机器学习,就是因为不可能得到所有的data,你只能sample一部分的sample。所以最好的g应当是在out of sample上表现好的。因为,我们并不能测得error in sample,所以最好的办法就是建立error in sample 与error out of sample的联系,能不能有一个upper bound来衡量两者之间的关系呢?答案是肯定,那就是Hoeffding's 不等式。
4)hoeffding不等式说明了一个问题,如果Hypothesis set中hypothesis能shutter很多种类(就是VC dimension很大),就会导致这个Error in sample与Error out of sample相差很大,也就是指模型复杂度很大。这样error in sample 你能做的很小,但是error out of sample会很大。
5)VC维大=>模型复杂度高=>error in sample 小=>模型不够平滑=>generalization能力弱=>error out of sample大=>overfitting=>模型并没有卵用。
2. Generalization(泛化能力)
1)衡量模型在out of sample上的表现;
2)通常曲线越平滑,泛化能力越强,但error in sample就可能越大,underfitting;曲线也复杂,error in sample就可能做的越小,但泛化能力越弱,overfitting;
3. Regularization(正则化)
1)用来控制模型复杂度,从而实现Error in sample与Error out of sample的逼近,也就是使得既具有较好的精度,又有较好的泛化能力;
2)不同的regularizer对应不同的回归方法:L1,L2,...实际上就是一种惩罚措施。用来权衡是要好的error和好的generalization能力;
4. Validation
用来衡量机器学习泛化能力的一种方法。因为机器学习得到的Hypothesis是为了在out of sample上进行处理,而不是在in sample上处理。所以,用来评价机器学习是否学到位的一种手段就是从validation。一般的做法是将先验的数据集分开为训练集和验证集,用训练集进行Hypothesis的学习,用验证集决定学习的终止条件,并给出学习的Hypothesis性能指标。但是如果将数据集分开,那么用于训练的样本就变少了。我们知道训练集的样本数N是机器学习中防止overfitting的一重大的因素。如果模型复杂度较高的话,通常需要增加训练样本的数量来克服由于模型复杂度导致的overfitting的风险。比如神经网络就是一种典型的例子。所以最好是能够不减少训练集的样本数,而且还能进行validation。这样就提出了leave one out的validation和N-folder validation。
除了以上四个我觉得极为重要的概念和思想,还有一些主要内容比如:导致overfitting的几种原因:过度使用vc dimension,noise和limited data size N,解决overfitting的几种方法、技巧:validation(cross validation,leave one out validation, N-folder valiation...),data hinting, data cleaning/pruning, regularization, start from simple model等等。这里都不再进行总结
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27