机器学习基本原理和概念
1. VC dimension(VC维,非常重要的概念)
能够shutter 二分类问题的上限。也是衡量模型复杂度的工具(类似自由度的概念)。之所以这个概念比较重要是它能够解释为什么机器能够学习。
1),以概率统计中常用的手段:用sample来估计整体,机器学习也是如此,就是说,通过对采样得到的sample进行学习,能够用来对out of sample进行估计、处理、预测、分类等等。所谓的学习就是从一堆Hypothesis(set)中,利用sample,通过learning algorithm赛选出合适的hypothesis - g的过程。
2)塞选的标准通常是各种类型的error(0/1error,square error...),这些误差是用来调节W权重,最后得到比较小Error (in sample)的hypothesis(g)。
3)这个g只是在in sample上表现比较好,其实在in sample上表现好并没什么卵用,因为如果你只是处理in sample数据的话就没有必要进行机器学习,之所以使用机器学习,就是因为不可能得到所有的data,你只能sample一部分的sample。所以最好的g应当是在out of sample上表现好的。因为,我们并不能测得error in sample,所以最好的办法就是建立error in sample 与error out of sample的联系,能不能有一个upper bound来衡量两者之间的关系呢?答案是肯定,那就是Hoeffding's 不等式。
4)hoeffding不等式说明了一个问题,如果Hypothesis set中hypothesis能shutter很多种类(就是VC dimension很大),就会导致这个Error in sample与Error out of sample相差很大,也就是指模型复杂度很大。这样error in sample 你能做的很小,但是error out of sample会很大。
5)VC维大=>模型复杂度高=>error in sample 小=>模型不够平滑=>generalization能力弱=>error out of sample大=>overfitting=>模型并没有卵用。
2. Generalization(泛化能力)
1)衡量模型在out of sample上的表现;
2)通常曲线越平滑,泛化能力越强,但error in sample就可能越大,underfitting;曲线也复杂,error in sample就可能做的越小,但泛化能力越弱,overfitting;
3. Regularization(正则化)
1)用来控制模型复杂度,从而实现Error in sample与Error out of sample的逼近,也就是使得既具有较好的精度,又有较好的泛化能力;
2)不同的regularizer对应不同的回归方法:L1,L2,...实际上就是一种惩罚措施。用来权衡是要好的error和好的generalization能力;
4. Validation
用来衡量机器学习泛化能力的一种方法。因为机器学习得到的Hypothesis是为了在out of sample上进行处理,而不是在in sample上处理。所以,用来评价机器学习是否学到位的一种手段就是从validation。一般的做法是将先验的数据集分开为训练集和验证集,用训练集进行Hypothesis的学习,用验证集决定学习的终止条件,并给出学习的Hypothesis性能指标。但是如果将数据集分开,那么用于训练的样本就变少了。我们知道训练集的样本数N是机器学习中防止overfitting的一重大的因素。如果模型复杂度较高的话,通常需要增加训练样本的数量来克服由于模型复杂度导致的overfitting的风险。比如神经网络就是一种典型的例子。所以最好是能够不减少训练集的样本数,而且还能进行validation。这样就提出了leave one out的validation和N-folder validation。
除了以上四个我觉得极为重要的概念和思想,还有一些主要内容比如:导致overfitting的几种原因:过度使用vc dimension,noise和limited data size N,解决overfitting的几种方法、技巧:validation(cross validation,leave one out validation, N-folder valiation...),data hinting, data cleaning/pruning, regularization, start from simple model等等。这里都不再进行总结
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03