京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据主导下的“分享经济”走向
尼尔森咨询最近做了一个全球性调查,看哪个国家和地区最渴望“分享经济”,它找到的答案,是中国。但 Airbnb、Lyft 包括私人停车库出租共享的 SPOT 也已经不是分享经济最前沿代表了。以下,是美国刚刚冒出或正在讨论的几种分享经济走向。
另外,杰里米·里夫金刚刚被引进中国的新书《零边际成本社会》提供了一个衡量这个新经济模型的边界:使用权胜过所有权、可持续性取代消费主义、社会资本和金融资本同样重要,以及“生产型消费者”大规模崛起,这个即将大规模爆发的群体特征是:他们在同一领域消费产品的同时,也在生产这个产品。
3D 打印 + 分享经济
如果在 B 平台能以 29 刀入手,我们怎么可能在 A 平台以 37 刀买同样东西呢?现在,竞争已经激烈到很多卖家不得不以近乎成本价出售商品,但这种竞争还要进一步加剧,因为 3D 打印技术的发展,必将消除“零售商”这个概念。
所谓“消除零售商”,是指:如果我有一台 3D 打印机,那我就不用再向制造商买东西,我自己就能生产商品,甚至还能卖给别人。也就是说:3D 打印机的拥有者,最终会变成制造商。
尽管目前大部分消费者能买到的 3D 打印机生产效果还不如大制造商工厂里的机器,但它们正快速追赶。如果未来 3D 打印机能实现高质、量产,那么人人都能成为制造商,现在的“零售商”概念也将随之消失。
同时一旦嫁接“开源”,人们不仅能以相对低廉的价格买到 3D 打印出的产品,还能免费下载该产品代码。也就是说,人们只需要准备必要的原材料,就能制造出别人设计的产品。
如此发展,生产能赚钱的东西可能就不再是有技术和有创意的人的专利了。任何人都能靠生产别人创造的产品获利。这种开放,能保证商品有极大量的市场供给。它的好处在于:买方得到所需产品的成本降低,而卖方生产时的边际成本也被摊薄了。
在 3D 打印领域,分享已经引领潮流。Thingiverse 和 Shapeways 等平台都在扮演“开放资源社区”角色,它们提供大量公开分享的产品代码及无数有形的小产品。
奥巴马政府已经规定,美国以后在所有中小学都要有个 3D 打印机,每个孩子都要有个 3D 打印机,以后你会看到所有小孩在自己家里用 3D 打印方式生产东西。他们也许使用回收的材料、廉价能源,东西可大可小,但是一切都可以打印。在未来,也许大桥、高楼这样比较复杂大型的东西还需要专业公司生产,但是一些小东西完全可以在家里自己生产,而他们所需要的模板材料,都可以从互联网上免费获取。
也就是说,未来必然会形成一个大厂商和不同生产者竞争的格局,如果一个公司想替代普通生产者去生产某一样小东西,它怎么能干得过全人类呢?
大数据 + 分享经济
另一个领域虽然还未受到太多关注,却必将改变世界。它就是:不同数据库之间的数据共享。Facebook 为什么收购 WhatsApp?亚马逊为什么宣布进入移动支付战场?答案是,现如今,软件公司中最聪明的那部分已经意识到,比他们正贩卖的服务更值钱的,是他们收集的数据。
当用户使用 App,他们定位被追踪;他们的购买历史被记录;他们在注册时需要确认个人信息、填写邮箱地址,甚至被要求提供母亲姓名。一个 App 收集到的关于某用户的数据也许零散、无价值,就像一堆组不成句的单词,但是,当多个 App 之间开辟数据共享,这些单词就可能被连成句子,甚至成段成章。而一旦这些共享数据找到彼此关联,它形成的信息网将释放巨大能量,极大降低现实中人与人、人与物之间建立连接的成本。
软件公司之间开放数据分享,效果能有多逆天?举个例子:Expensify 是家颇受欢迎的移动支出报告服务公司,未来,它的数据可以这样用:在它数据库,分享你和其他人的数据。这样,你的 App 会对你说:“嘿,现在是晚餐时间,在你住的酒店旁有一家很棒的泰国餐馆。我们另一位用户 Bob 也曾来过这个城市并给这家店 5 星评价,你现在想让我帮你定个座吗?”
或者,可以与 GrubHub 分享数据,这样它就能帮你订你最喜欢的菜并送到你住的酒店。又或者,与 Uber 分享数据:“我知道你刚刚落地,你是想直接坐车去酒店,还是先兜去那家泰国餐馆?”如果它们在用户付饭钱过程中加入一个打分体系,那它们收集到的数据,就相当一个商务旅行方向的 Yelp 了。
还有升级版。“‘嘿,这么说好像有点冒昧,不过附近有一个商务游客跟你一样喜欢泰国菜,而且从她的行程上看,她现在有空。你想跟她在 Bob 推荐的泰国餐馆一起吃点咖喱吗?如果你不想,我将不再提示。’”
这就是大数据与分享经济结合的结果。它就像个贴身管家,你想到的,它都能想到,你想不到的,它也能想到。这样的生活简直不要太方便,但是当技术进阶到“升级版”程度时,你可能:需要多花点心思看紧你另一半了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06