
R语言与点估计学习笔记(EM算法与Bootstrap法)
一、EM算法
EM算法是一种在观测到数据后,用迭代法估计未知参数的方法。可以证明EM算法得到的序列是稳定单调递增的。这种算法对于截尾数据或参数中有一些我们不感兴趣的参数时特别有效。
EM算法的步骤为:
E-step(求期望):在给定y及theta=theta(i)的条件下,求关于完全数据对数似然关于潜在变量z的期望
M-step(求极值):求上述期望关于theta的最大值theta(i+1)
重复以上两步,直至收敛即可得到theta的MLE。
从上面的算法我们可以看到对于一个参数的情况,EM仅仅只是求解MLE的一个迭代算法。M-step做得就是optimize函数做得事情。对于EM算法,我们也没有现成的求解函数(这个是自然的),我们一样可以通过人机交互的办法处理。
先举一个一元的例子:
设一次实验可能有4个结果,发生概率分别为0.5+theta/4, 0.25-theta/4 ,0.25-theta/4 ,theta/4.其中theta在0,1之间。现进行了197次实验,结果发生的次数分别为:125,18,20,34,求theta的MLE。
计算出theta(i+1)=(195theta(i)+68)/(197theta(i)+144)
为什么是这个结果,请翻阅王兆军《数理统计讲义》p43-p44
我们用简单的循环就可以解决这个问题,程序及结果如下:
>fun<-function(error=1e-7){
+theta<-0.5
+k<-1
+while(T){
+k<-k+1
+theta[k]<-(159*theta[k-1]+68)/(197*theta[k-1]+144)
+if(abs(theta[k]-theta[k-1])<error) break
+}
+list(theta<-theta[k],iter<-k)
+}
>fun()
[[1]]
[1]0.6268215
[[2]]
[1]9
我们再看一个二元的简单例子:
幼儿园里老师给a,b,c,d四个小朋友发糖吃,但老师有点偏心,不同小朋友得到糖的概率不同,p(a)=0.5,p(b)=miu, p(c)=2*miu, p(d)=0.5-3*miu 如果确定了参数miu,概率分布就知道了。我们可以通过观察样本数据来推测参数知道c和d二人得到的糖果数,也知道a与b二人的糖果数之和为h,如何来估计出参数miu呢?前面我们知道了,如果观察到a,b,c,d就可以用ML估计出miu。反之,如果miu已知,根据概率期望 a/b=0.5/miu,又有a+b=h。由两个式子可得到 a=0.5*h/(0.5+miu)和b=miu*h/(0.5+miu)。
># 已知条件
>
>h = 20
>c = 10
>d = 10
>
># 随机初始两个未知量
>miu = runif(1,0,1/6)
>b = round(runif(1,1,20))
>
>iter = 1
>nonstop=TRUE
>while (nonstop) {
+ # E步骤,根据假设的miu来算b
+ b = c(b,miu[iter]*h/(0.5+miu[iter]))
+ print(b)
+ # M步骤,根据上面算出的b再来计算miu
+ miu = c(miu,(b[iter+1] +c)/(6*(b[iter+1]+c+d)))
+ print(miu)
+ # 记录循环次数
+ iter = iter + 1
+ # 如果前后两次的计算结果差距很小则退出
+ nonstop =((miu[iter]-miu[iter-1])>10^(-10))
+}
[1]3.000000 4.450531
[1]0.14310878 0.09850182
>print(cbind(miu,b))
miu b
[1,]0.14310878 3.000000
[2,]0.09850182 4.450531
关于EM算法,及后续的发展GME的理论你可以在多数数理统计书上找到相关结论,也可以用类似办法编写函数处理它。
二、 自助法(bootstrap)
Bootstrap法是以原始数据为基础的模拟抽样统计推断法,可用于研究一组数据的某统计量的分布特征,特别适用于那些难以用常规方法导出对参数的区间估计、假设检验等问题。“Bootstrap”的基本思想是:在原始数据的围内作有放回的再抽样,样本含量仍为n,原始数据中每个观察单位每次被抽到的概率相等,为1,…,n,所得样本称为bootstrap样本。于是可得到参数Η的一个估计值Η(b),这样重复若干次,记为B。设B=1000,就得到该参数的1000个估计值,则参数Η的标准误的bootstrap估计。简而言之就是:既然样本是抽出来的,那我何不从样本中再抽样。
我们知道,如果分布函数F是已知的。在理论上就能够计算出参数的估计量的均方误差.若分布函数f未知,由格里文科-康特利定理知,当M充分大时,经验分布函数以概率1一致收敛到F。
我们举一例:利用bootstrap法估计标准正态分布随机变量的期望theta=E(X)
>gauss<-rnorm(100,2,6)
>boot<-0
>for(i in 1:1000){
+boot[i]=mean(sample(gauss,replace=T))
+}
>summary(boot)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3345 1.9540 2.3350 2.3230 2.7020 4.2330
>summary(gauss)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-13.380 -2.238 2.570 2.296 6.861 16.230
>sd(boot)
[1]0.599087
>sd(gauss)/sqrt(100)
[1]0.5906275
结果分析:
需要指出的是bootstrap法不是为了提高估计量的精度.而是一般用来对估计量的方差进行估计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11