京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据人才时代,懂得跨越行业界限,越过界限,倾听数据的声音,用数据来指导和引领未来。
分会场1:大数据与生物医疗
大数据是改变行业的关键节点,随着生物科技和医疗技术的迅猛发展,生物医疗行业的大数据急剧膨胀。与其它数据行业不同,生物医疗行业的数据呈现分散,破碎,低透明度,以及意义尚等解析等特征。时间推移,生物医疗数据不断累积,数据价值越来越重。加上中国健康人群及患者数量庞大,就越发会产生超海量的数据网络。在大数据时代,生物医疗的未来将何去何从?
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力。
继数字时代、信息时代、互联网时代后,人类又进入了大数据时代。因互联网的迅猛发展,“大”量数据的获取、聚集、存储、传输、处理、分析等变得越来越便捷,大数据逐渐发展成为一门新学科、一套新学说以及一种分析与解决问题的新方法、新手段。互联网大数据分论坛的几位分享嘉宾结合自己的亲身实际,讲帮我们解读互联网在大数据的指引下的未来。
大数据对于电商发展的作用地位越来越突出,电商纷纷开始重视对大数据的采集和挖掘。尤其随着今天移动互联网的变化,消费习惯也在发生改变,屏幕变小了,数据变大了,大数据更有理由走向前台。一个优秀的电商企业如何在大数据上拔得头筹?电商大数据的未来将会如何?
正相较于传统金融,大数据金融使得抵押贷款模式逐步被信用贷款模式所取代。基于大数据金融的优势,电商、电信运营商、钢铁企业、IT企业等等纷纷利用大数据金融涉足金融行业。那么大数据金融和传统的金融行业相比较究竟有哪些神奇之处?金融大数据的未来又将何去何从?
大数据和人工智能是今天计算机学科的两个重要的分支。近年来,有关大数据和人工智能这两个领域所进行的研究一直从未间断。其实,大数据和人工智能的联系千丝万缕。首先,大数据技术的发展依靠人工智能,因为它使用了许多人工智能的理论和方法。其次,人工智能的发展也必须依托大数据技术,需要大数据进行支撑。大数据时代背景下,人工智能将何去何从,几位嘉宾邀您共同探讨大数据与人工智能的未来。
大数据的第一要务就是解决业务问题,从一定程度上来讲就是用数据技术手段来拓展和优化业务。对外,要有清晰的商业模式构想;对内,要有清晰的场景,能用大数据手段提升效率。而BI的应用远大于大数据应用。大数据相对于传统BI,也不仅是简单的PLUS的关系,它涉及了思想、工具和人员深层次的变革,BI人员也应当正视大数据,要确保BI的传承,还要能顺应大数据时代的发展,数据可视化与商业BI在大数据时代的未来将面临怎样的跌宕起伏?
随着大数据的快速发展和在各个领域中的应用越来越广泛,交通大数据的研究非常活跃,研究的程度也越来越深入,数据技术正在为交通运行管理提供便利,对于促进交通运行的整体效率以及安全性都有着非常重要的意义。交通旅游行业对“大数据”应用的重视逐渐加强,但是大数据应该如何应用于交通旅游业?交通旅游业的发展在大数据的推动下会如何?
目前,全球已进入大数据时代,大数据正以一种革命风暴的姿态闯入人们视野,其技术和市场在快速发展,而驾驭大数据的呼声则一浪高过一浪。如何运用大数据帮助投资者提供更为专业化的服务,成为有效的投资者抓手?如何运用大数据来缓解投资顾问服务覆盖不足的缺陷?大数据市场支持下的智慧投资将如何发展?
大数据是一种新一代的技术和架构,具备高效率的捕捉、发现和分析能力,能够经济地从类型繁杂、数量庞大的数据中挖掘出色价值。而随着互联网的高速发展,用户数量和数据规模急剧扩张,单一的数据库服务已无法满足当前应用的需求。数据库与技术实战应该如何在大数据时代跟上潮流?
CDA秉承着总结凝练最先进的商业数据分析实践为使命,明晰各类数据分析从业者的知识体系为职责,旨在加强全球范围内正规化、科学化、专业化的大数据及数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。CDA数据分析师与拉勾达成的数据分析师招聘专场就是本次活动的另外一个亮点,但是CDA数据分析师依旧奔波在路上……
报名链接:

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15