R语言典型相关分析
1 关键点:典型相关分析
典型相关分析是用于分析两组随机变量之间的相关程度的一种统计方法,它能够有效地揭示两组随机变量之间的相互(线性依赖)关系
例如 研究生入学考试成绩与本科阶段一些主要课程成绩的相关性
将研究两组变量的相关性问题转化为研究两个变量的相关性问题 此类相关为典型相关#
2 分类:
总体典型相关
样本典型相关
3 R语言提供的计算函数:
典型相关计算 cancor(x,y,xcenter=TRUE,ycenter=TRUE)
x,y是相应的数据矩阵 xcenter,ycenter是逻辑变量 TRUE是将数据中心化 FALSE是不中心化
4 分析结果含义
cor是典型相关系数
xcoef是对应于数据x的系数 又称关于数据x的典型载荷即样本典型变量U系数矩阵A的转置
xcenter是数据X的中心 即数据X的样本均值
y是对应于数据x的系数 又称关于数据y的典型载荷即样本典型变量V系数矩阵B的转置
ycenter是数据Y的中心 即数据Y的样本均值
5 分析步骤
(1.)载入原始数据 data.frame
(2.)原始数据标准化 scale
(3.)典型相关分析 cancor
(4.)相关系数显著性检验 corcoef.test.R
I.典型相关分析的计算
现对20名中年人测得三个生理指标:体重(X1) 腰围(X2) 脉搏(X3);三个训练指标:引体向上(Y1) 起座次数(Y2) 跳跃次数(Y3) 试分析这组数据的相关性
#用数据框的形式输入数据矩阵
test<-data.frame(
X1=c(191, 193, 189, 211, 176, 169, 154, 193, 176, 156,
189, 162, 182, 167, 154, 166, 247, 202, 157, 138),
X2=c(36, 38, 35, 38, 31, 34, 34, 36, 37, 33,
37, 35, 36, 34, 33, 33, 46, 37, 32, 33),
X3=c(50, 58, 46, 56, 74, 50, 64, 46, 54, 54,
52, 62, 56, 60, 56, 52, 50, 62, 52, 68),
Y1=c( 5, 12, 13, 8, 15, 17, 14, 6, 4, 15,
2, 12, 4, 6, 17, 13, 1, 12, 11, 2),
Y2=c(162, 101, 155, 101, 200, 120, 215, 70, 60, 225,
110, 105, 101, 125, 251, 210, 50, 210, 230, 110),
Y3=c(60, 101, 58, 38, 40, 38, 105, 31, 25, 73,
60, 37, 42, 40, 250, 115, 50, 120, 80, 43)
)
#为了消除数量级的影响 将数据标准化处理 调用scale函数
test<-scale(test)
#对标准化的数据做典型相关分析
ca<-cancor(test[,1:3],test[,4:6])
#查看分析结果
ca
结果说明:
1) cor给出了典型相关系数;xcoef是对应于数据X的系数, 即为关于数据X的典型载荷; ycoef为关于数据Y的典型载荷;xcenter与$ycenter是数据X与Y的中心, 即样本均值;
2) 对于该问题, 第一对典型变量的表达式为
U1 = -0.17788841x1 + 0.36232695x2 - 0.01356309x3
U2 = -0.43230348x1 + 0.27085764x2 - 0.05301954x3
U3 = -0.04381432x1 + 0.11608883x2 + 0.24106633x3
V1 = -0.08018009y1 - 0.24180670y2 + 0.16435956y3
V2 = -0.08615561y1 + 0.02833066y2 + 0.24367781y3
V3 = -0.29745900y1 + 0.28373986y2 - 0.09608099y3
相应的相关系数为:p(U1,V1)=0.79560815 ,p(U2,V2)=0.20055604 ,p(U3,V3)=0.07257029
可以进行典型相关系数的显著性检验, 经检验也只有第一组典型变量.
下面计算样本数据在典型变量下的得分:
#计算数据在典型变量下的得分 U=AX V=BY
U<-as.matrix(test[, 1:3])%*% ca$xcoef ; U
V<-as.matrix(test[, 4:6])%*% ca$ycoef ; V
#调整图形
opar <- par(mfrow = c(1, 1),mar = c(5,4,1,1))
#画出以相关变量U1、V1和U3、V3为坐标的数据散点图
plot(U[,1], V[,1], xlab="U1", ylab="V1")
plot(U[,3], V[,3], xlab="U3", ylab="V3")
#调整图形
par(opar)
由散点图可知 第一典型相关变量分布在一条直线附近;第三典型相关变量数据很分散。因为第一典型变量其相关系数为0.79560815,接近1,所以在一直线附近;第三典型变量的相关系数是0.07257029,接近于0,所以很分散。
II.典型相关系数的显著性检验
作为相关分析的目的 就是选择多少对典型变量?因此需要做典型相关系数的显著性检验。若认为相关系数k为0 就没有必要考虑第k对典型变量了
#相关系数检验R程序
corcoef.test<-function(r, n, p, q, alpha=0.1){
#r为相关系数 n为样本个数 且n>p+q
m<-length(r); Q<-rep(0, m); lambda <- 1
for (k in m:1){
#检验统计量
lambda<-lambda*(1-r[k]^2);
#检验统计量取对数
Q[k]<- -log(lambda)
}
s<-0; i<-m
for (k in 1:m){
#统计量
Q[k]<- (n-k+1-1/2*(p+q+3)+s)*Q[k]
chi<-1-pchisq(Q[k], (p-k+1)*(q-k+1))
if (chi>alpha){
i<-k-1; break
}
s<-s+1/r[k]^2
}
#显示输出结果 选用第几对典型变量
i
}
source("corcoef.test.R")
#输入相关系数r,样本个数n,两个随机向量的维数p和q,置信水平a(缺省值为0.1)
corcoef.test(r=ca$cor,n=20,p=3,q=3)
#程序输出值为典型变量的对数
最终程序运行结果显示选择第一对典型相关变量。我们只利用第一典型变量分析问题,达到降维的目的。
write.csv(test,"test_test.csv")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03