
利用QQ群进行数据挖掘案例,数据源来源于2016年12-2017年大致一个月的QQ群基本数据,通过对聊天内容的分析,了解QQ聊天群资料了解时间,人群以及关键词,并构建相应图表、云图等,下图为本人所在提取的QQ群:
以下是R代码部分:
file.data<-scan("C:/Users/admin/Desktop/数据挖掘机器学习R-Hive.txt",what="",sep="\n",encoding="UTF-8")
#数据清洗
clean<-function(file.data){
data<-data.frame(user.name=c(),time=c(),text=c())
user.name=c();time=c();text=c();
for(i in 6:length(file.data))
{
reg.time<-regexpr("[0-9]{4}-[0-9]{2}-[0-9]{2}[0-9]+:[0-9]+:[0-9]+",file.data[i])
if(reg.time==1){#该行取到了时间信息
data<-rbind(data,data.frame(user.name=user.name,time=time,text=text))
text=c("1")
begin<-reg.time
end<-reg.time+attr(reg.time,"match.length")-1
time=substr(file.data[i],begin,end)
begin=reg.time+attr(reg.time,"match.length")+1
end<-nchar(file.data[i])
user.name<-substr(file.data[i],begin,end)#读取用户名信息
}
else{text=paste(text,file.data[i])}
}
return(data)}
data<-clean(file.data)#数据结构化
#活跃度计算
d1=table(data[,1])>d = data.frame(word = names(d1),freq = d1,stringsAsFactors = F) ;>d=d[order(d[,3],decreasing=T),]
#由于测试群记录数据量,后期效果不是很明显。这也是大数据火的原因吧?
>dim(d1)[1] 29>length(data[,1])[1] 164#转换数据类型data$name<-as.character(data$user.name)data$text<-as.character(data$text)data$datatime<-as.POSIXlt(data$time)#整理账期的年、月、日、时、分、秒部分
> data <- transform(data,
+ year = datatime$year+1900,
+ month = datatime$mon+1,
+ day = datatime$mday,
+ hour = datatime$hour,
+ min = datatime$min,
+ sec = datatime$sec)
>
> d1=table(data[,1])
> d = data.frame(word = names(d1),freq =d1,stringsAsFactors = F) ;
> d=d[order(d[,3],decreasing=T),]
> head(d)
# 活跃度统计
#去掉停用词
mixseg = worker()
textt=paste(as.character(data[,3]),sep="",collapse ="")
textt<-mixseg<=textt
t=unlist(textt)
cnword<-read.csv("C:/Users/admin/Desktop/几个停用词.txt",header=F,stringsAsFactors=F)
cnword<-as.vector(cnword[1:dim(cnword)[1],])#需要为向量格式
t=t[!t%in%cnword]#去停用词
t1=table( t )
plot(t1) 初步查看分词不是很理想,继续调整
> d =data.frame(word = names(d1),freq = d1,stringsAsFactors = F) ;
>d=d[order(d[,3],decreasing=T),]
>d=d[nchar(as.character(d$word))>1,]
>write.table(d,"C:/Users/admin/Desktop/几个停用词.txt聊天内容词频排名.csv",sep=",",row.names = F)
>t1=t1[!names(t1)%in%c("男神","女神","你懂的")]#去没有意义的词
> library(Rwordseg)
t1=t1[nchar(as.character(names(t1)))==2]
plot(t1,xlab="词组",ylab="词频") #效果实例而已,好的数据会有好的效果。
---------用wordcloud进行过程-------------------------------------
#分词后的词语频率汇总
> wdfreq <- as.data.frame(table(t1))
> head(wdfreq)
t1Freq
1 1 14
2 2 1
3 7 2
#频数排序 **
wdfreq<-rev(sort(wdfreq$Freq))
------------------------------------------------------
#使用wordcloud2构造云图
wordcloud2(t1,size=2,fontFamily='SegoeUI')
---------用wordcloud进行过程-------------------------------------
#分词后的词语频率汇总
> wdfreq <- as.data.frame(table(t1))
> head(wdfreq)
t1Freq
1 1 14
2 2 1
3 7 2
#频数排序 **
wdfreq<-rev(sort(wdfreq$Freq))
------------------------------------------------------
#使用wordcloud2构造云图
wordcloud2(t1,size=2,fontFamily='SegoeUI')
> datax=substr(data[,2],1,10)#得到日期,不要时分秒
> a=table(datax)
> plot(a,xlab="日期",ylab="频数",main="参与聊天人数/日期")
data1=data.frame(user.name=data[,1],data=substr(data[,2],1,10),time=substr(data[,2],12,regexpr(":",data[,2])-1),text=data[,3])
#write.table(data1," C:/Users/admin/Desktop/.细分数据.csv",sep=",",row.names = F)
a=table(data1[,3])
plot(a,xlab="日期",ylab="频数",col=4,main="参与聊天人数/二十小时分布")
WORDCLOUD2常用参数:
(1)data:词云生成数据,包含具体词语以及频率;
(2)size:字体大小,默认为1,一般来说该值越小,生成的形状轮廓越明显;
(3)fontFamily:字体,如‘微软雅黑’;
(4)fontWeight:字体粗细,包含‘normal’,‘bold’以及‘600’;;
(5)color:字体颜色,可以选择‘random-dark’以及‘random-light’,其实就是颜色色系;
(6)backgroundColor:背景颜色,支持R语言中的常用颜色,如‘gray’,‘blcak’,但是还支持不了更加具体的颜色选择,如‘gray20’;
(7)minRontatin与maxRontatin:字体旋转角度范围的最小值以及最大值,选定后,字体会在该范围内随机旋转;
(8)rotationRation:字体旋转比例,如设定为1,则全部词语都会发生旋转;
(9)shape:词云形状选择,默认是‘circle’,即圆形。还可以选择‘cardioid’(苹果形或心形),‘star’(星形),‘diamond’(钻石),‘triangle-forward’(三角形),‘triangle’(三角形),‘pentagon’(五边形);
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05