
利用QQ群进行数据挖掘案例,数据源来源于2016年12-2017年大致一个月的QQ群基本数据,通过对聊天内容的分析,了解QQ聊天群资料了解时间,人群以及关键词,并构建相应图表、云图等,下图为本人所在提取的QQ群:
以下是R代码部分:
file.data<-scan("C:/Users/admin/Desktop/数据挖掘机器学习R-Hive.txt",what="",sep="\n",encoding="UTF-8")
#数据清洗
clean<-function(file.data){
data<-data.frame(user.name=c(),time=c(),text=c())
user.name=c();time=c();text=c();
for(i in 6:length(file.data))
{
reg.time<-regexpr("[0-9]{4}-[0-9]{2}-[0-9]{2}[0-9]+:[0-9]+:[0-9]+",file.data[i])
if(reg.time==1){#该行取到了时间信息
data<-rbind(data,data.frame(user.name=user.name,time=time,text=text))
text=c("1")
begin<-reg.time
end<-reg.time+attr(reg.time,"match.length")-1
time=substr(file.data[i],begin,end)
begin=reg.time+attr(reg.time,"match.length")+1
end<-nchar(file.data[i])
user.name<-substr(file.data[i],begin,end)#读取用户名信息
}
else{text=paste(text,file.data[i])}
}
return(data)}
data<-clean(file.data)#数据结构化
#活跃度计算
d1=table(data[,1])>d = data.frame(word = names(d1),freq = d1,stringsAsFactors = F) ;>d=d[order(d[,3],decreasing=T),]
#由于测试群记录数据量,后期效果不是很明显。这也是大数据火的原因吧?
>dim(d1)[1] 29>length(data[,1])[1] 164#转换数据类型data$name<-as.character(data$user.name)data$text<-as.character(data$text)data$datatime<-as.POSIXlt(data$time)#整理账期的年、月、日、时、分、秒部分
> data <- transform(data,
+ year = datatime$year+1900,
+ month = datatime$mon+1,
+ day = datatime$mday,
+ hour = datatime$hour,
+ min = datatime$min,
+ sec = datatime$sec)
>
> d1=table(data[,1])
> d = data.frame(word = names(d1),freq =d1,stringsAsFactors = F) ;
> d=d[order(d[,3],decreasing=T),]
> head(d)
# 活跃度统计
#去掉停用词
mixseg = worker()
textt=paste(as.character(data[,3]),sep="",collapse ="")
textt<-mixseg<=textt
t=unlist(textt)
cnword<-read.csv("C:/Users/admin/Desktop/几个停用词.txt",header=F,stringsAsFactors=F)
cnword<-as.vector(cnword[1:dim(cnword)[1],])#需要为向量格式
t=t[!t%in%cnword]#去停用词
t1=table( t )
plot(t1) 初步查看分词不是很理想,继续调整
> d =data.frame(word = names(d1),freq = d1,stringsAsFactors = F) ;
>d=d[order(d[,3],decreasing=T),]
>d=d[nchar(as.character(d$word))>1,]
>write.table(d,"C:/Users/admin/Desktop/几个停用词.txt聊天内容词频排名.csv",sep=",",row.names = F)
>t1=t1[!names(t1)%in%c("男神","女神","你懂的")]#去没有意义的词
> library(Rwordseg)
t1=t1[nchar(as.character(names(t1)))==2]
plot(t1,xlab="词组",ylab="词频") #效果实例而已,好的数据会有好的效果。
---------用wordcloud进行过程-------------------------------------
#分词后的词语频率汇总
> wdfreq <- as.data.frame(table(t1))
> head(wdfreq)
t1Freq
1 1 14
2 2 1
3 7 2
#频数排序 **
wdfreq<-rev(sort(wdfreq$Freq))
------------------------------------------------------
#使用wordcloud2构造云图
wordcloud2(t1,size=2,fontFamily='SegoeUI')
---------用wordcloud进行过程-------------------------------------
#分词后的词语频率汇总
> wdfreq <- as.data.frame(table(t1))
> head(wdfreq)
t1Freq
1 1 14
2 2 1
3 7 2
#频数排序 **
wdfreq<-rev(sort(wdfreq$Freq))
------------------------------------------------------
#使用wordcloud2构造云图
wordcloud2(t1,size=2,fontFamily='SegoeUI')
> datax=substr(data[,2],1,10)#得到日期,不要时分秒
> a=table(datax)
> plot(a,xlab="日期",ylab="频数",main="参与聊天人数/日期")
data1=data.frame(user.name=data[,1],data=substr(data[,2],1,10),time=substr(data[,2],12,regexpr(":",data[,2])-1),text=data[,3])
#write.table(data1," C:/Users/admin/Desktop/.细分数据.csv",sep=",",row.names = F)
a=table(data1[,3])
plot(a,xlab="日期",ylab="频数",col=4,main="参与聊天人数/二十小时分布")
WORDCLOUD2常用参数:
(1)data:词云生成数据,包含具体词语以及频率;
(2)size:字体大小,默认为1,一般来说该值越小,生成的形状轮廓越明显;
(3)fontFamily:字体,如‘微软雅黑’;
(4)fontWeight:字体粗细,包含‘normal’,‘bold’以及‘600’;;
(5)color:字体颜色,可以选择‘random-dark’以及‘random-light’,其实就是颜色色系;
(6)backgroundColor:背景颜色,支持R语言中的常用颜色,如‘gray’,‘blcak’,但是还支持不了更加具体的颜色选择,如‘gray20’;
(7)minRontatin与maxRontatin:字体旋转角度范围的最小值以及最大值,选定后,字体会在该范围内随机旋转;
(8)rotationRation:字体旋转比例,如设定为1,则全部词语都会发生旋转;
(9)shape:词云形状选择,默认是‘circle’,即圆形。还可以选择‘cardioid’(苹果形或心形),‘star’(星形),‘diamond’(钻石),‘triangle-forward’(三角形),‘triangle’(三角形),‘pentagon’(五边形);
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20