京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R拟合分布
几个常用的概率函数介绍
这里,参考R语言实战,以及[Fitting Distribution with R]的附录。
一.认识各种分布的形态
1.1 连续型随机变量的分布
分布,F−分布,Wishart
分布。
先上个图,一睹为快。
以上几个分布之间的关系如以下结构图所示。
[广义线性模型导论3rd edition,p10]
1.1.1 正态分布
正态分布N(μ,σ2)
的密度函数:
正态分布的形态如图。
library(ggplot2)ggtitle
("正态分布密度函数")
正态分布可以衍生出如下的分布。
若Zi∼ i.i.dN(0,1)
,则有
set.seed(123)
data_chisq<-data.frame(x1 = rchisq(200, 10, ncp = 0),
x2 = rchisq(200, 50, ncp =0),
x3 = rchisq(200, 100, ncp = 0))
data_chisq_long<-melt(data_chisq)
## No id variables; using all as measure variables
ggplot(data = data_chisq_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
("卡方分布密度函数")
1.1.3t−
分布
若
,并且Z和X2独立,则有
set.seed(123)
data_t<-data.frame(x1 = rt(200, 10, ncp = 0),
x2 = rt(200, 50, ncp =0),
x3 = rt(200, 100, ncp = 0))
data_t_long<-melt(data_t)
## No id variables; using all as measure variables
ggplot(data = data_t_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
("t-分布密度函数")
1.1.4F−
分布
若
,并且X1和X2相互独立,则有
set.seed(123)
data_f<-data.frame(x1 = rf(200,df1 = 10, df2 = 10, ncp = 0),
x2 = rf(200,df1 = 5, df2 = 3, ncp =0),
x3 = rf(200, df1 = 3, df2 = 5, ncp = 0))
data_f_long<-melt(data_f)
## No id variables; using all as measure variables
ggplot(data = data_f_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
1.1.5Wishart
分布
Wishart
分布是χ2分布在p
维正态情况下的推广。这里对多维情况暂不展开介绍。
1.2 离散型随机变量的分布
1.2.1 伯努利(Bernoulli
)分布
伯努利分布记为Bernoulli(p)
,只有0和1两种取值。概率测度函数如下:
1.2.2 二项(Binomial
二项分布B(n,p)
的可能取值范围为0,1,...,n。其概率测度函数如下:

ggtitle
("二项分布概率分布图")
1.2.3 负二项(NegativeBinomial
)分布
负二项分布。
1.2.4 几何(Geometric
)分布
1.2.5 泊松(Poission
)分布
1.3 指数分布族及其相互联系
1.3.1 指数分布族
[广义线性模型导论3rd edition,p58]
1.3.2 指数分布
1.3.3 Weibull分布
1.3.4 Beta分布
1.3.5 Gama分布
1.3.6 双指数(DoubleExponential
)分布
1.4 其他分布
1.4.1 均匀(Uniform
)分布
1.4.2 柯西(Cauchy
)分布
1.4.3 对数正态(Lognormal
)分布
1.5 可视化探索的步骤举例
首先,通过直方图,经验累积分布形态等来观察数据的分布形态。
#产生一组服从N(10,2)分布的随机数
二.模型选择
三.参数估计
模拟估计
矩估计
极大似然估计
四.拟合优度指标
五.拟合优度检验
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06