
调查问卷SPSS数据录入与分析实例
目前,对调查问卷数据的分析主要采用SPSS等专业的软件。SPSS如何录入和分析数据呢?以下结合实例详细说一下。
频率分析
频率就是某个选项出现的次数,一般用来描述单选项。
问卷设计实例:
企业经营规模为(年销售额:人民币):
□>30亿 □5~30亿 □0.5~5亿 □<0.5亿
数据记录要点:
单列记录,第几项选中记录数值几,例如选中“0.5~5亿”则记录3。
SPSS基本操作方法:
导入数据;
Analyze……Descriptive statistics……Frequencies
选入该列数据,“OK”。
用来描述多选题的频次。
问卷设计实例:
贵公司产品的主要竞争力表现在(多选):
□外观 □功能 □质量 □个性化 □价格(成本) □交货期 □其它
数据记录要点:
多列记录,有几个选项记几列,选中记为1,未选中记为0。例如如果选中了外观和质量,则多列的记录为1,0,1,0,0,0,0。
SPSS基本操作方法:
导入数据;
Analyze……Multiple Response……Define Sets
选入该问题的多列数据,给新的集合变量取名(在Name那里填一个名字,例如“竞争力”),在Dichotomies Counted value中输入1,“Add”。
Analyze……Multiple Response……Frequencies
选人自定义的集合变量,“OK”。
用来描述变量之间的关联性,比如分析不同销售额企业的产品竞争力的关联关系(这两项之间不一定有关系,可以用logistic分析验证一下)。
问卷设计实例:
参见上面的两项。
数据记录要点:
参见上面两项。
SPSS基本操作方法(单选对单选,单选对多选,单选对多选在操作上略有不同):
导入数据;如果有多选项需要按2的方法定义集合变量。
如果是单选对单选
Analyze……Descriptive statistics……Crosstabs
否则:
Analyze……Multiple Response……Crosstabs
将两变量分别选入行和列中(多选项是选人集合变量,如果是单选对多选还要设置单选项的最大最小值),“OK”。
这里要注意,多选题不适合做交叉表分析。
描述统计
一般用来描述单变量的描述统计量,这些述统计量有平均值、算术和、标准差,最大值、最小值、方差、范围和平均数标准误等。问卷中用得不是特别多。
问卷设计实例(一般是开放性问题):
贵企业三维CAD已经应用了 年。
数据记录要点:
单列记录,直接记录所填数据。
SPSS基本操作方法:
导入数据;
Analyze……Descriptive statistics……Descriptives
选入该列数据,“Options…”,在其中选择需要的统计项目,问卷常用的项目有Mean(平均值)、Minimum( 最小值)、Maximum(最大值)等,“Continue”, “OK”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03