
SPSS分析技术:单因素方差分析结果的模型解读
SPSS的方差分析过程就是以方差分析模型的形式进行计算和结果输出的。下面我们将以单因素方差分析为例,介绍单因素方差分析结果的模型函数解读。帮助大家充分理解方差分析的深层模型含义。首先回顾方差分析的常用步骤:
1、方差齐性检验;
2、计算各项平方和与自由度;
3、列出方差分析表,进行F检验,并依据F值对应的p值做出判断;
4、事后多重比较;
为了便于理解,先回顾单因素方差分析模型。假设因素为职业;因变量为工资收入,那么单因素方差分析模型可以表示为:
案例分析
我们直接用SPSS进行单因素方差分析,并对结果进行模型解读。某汽车4S店希望比较4个品牌轮胎的耐磨性,分别从4个品牌的轮胎中抽取了5个样品,在相同的转速下磨损相同时间,测量其被磨损的深度(mm),数据如下图所示:
操作步骤
1、选择菜单【分析】-【一般线性模型】-【单变量】。如下图所示,在跳出的对话框中,将磨损深度选为因变量,将轮胎品牌选为固定因子。点击【事后多重检验】按钮,在跳出的对话框中,将轮胎品牌选入事后检验的框内,表示要对不同品牌的轮胎磨损程度进行两两比较,确定磨损程度的高低。在假定方差齐性区域选择LSD和S-N-K作为事后多重检验的检验方式。
2、点击【选项】按钮;将轮胎品牌选入显示平均值框;在输出区域选择描述统计、同质性检验、参数估计和对比系数矩阵。
3、点击确定,输出结果。
结果的模型解读
1、描述性统计结果;
上表是4组数据的描述性统计结果,它给出了样本均数和标准差。从标准差可知除D品牌较小外,其余三组标准差非常接近,至于有无方差不齐的问题需要看随后的齐性检验结果。
上表是方差齐性检验结果,用来检验4组样本的方差是否存在显著性差异。从结果可知,Levene方差齐性检验的F统计量为1. 292,在当前自由度下对应的P值为0. 311,可以认为4组样本所代表总体的方差齐。
2、方差分析表
第一行“修正的模型”进行的是整个方差分析模型的检验,其原假设为:模型中所有的因素均对因变量无影响,所有的因素系数均等于0。F值为24.550,P<0. 001,因此所用的模型有统计学意义,其中有的因素系数不等于0。由于当前方差分析模型中只有轮胎品牌这一个因素,因此该结论等于说不同品牌轮胎的磨损有差异。
第二行是截距,其原假设为u=0(回顾上方方差分析模型),即不考虑品牌时,所有轮胎的平均磨损深度等于0,显然检验结果拒绝了该假设,但由于截距在这里没有实际意义,可以忽略。
第三行开始对模型中各因素进行检验,由于本模型中只有一个因素,因此只能见到对因素轮胎品牌的检验,其原假设为:轮胎品牌这一因素均对轮胎磨损深度没有影响,因素系数等于0(回顾方差分析模型)。检验F值和P值均与第一行的检验结果相同,结论也完全等价。
3、模型参数的估计
上表是模型各参数的估计值,截距就是总的平均磨损深度,估计值为2.572,表示不考虑品牌时,轮胎的平均磨损深度为2.572mm。从第二行开始就是对各品牌参数的估计,四个轮胎品牌对应4个参数,由于这些参数之间存在数量上的关联,必须要加上一定的限制条件才能进行估计,在本例中,模型默认将编号取值最高的品牌D作为参照水平,这相当于强迫a4=0,另外三个品牌参数的估计值和检验结果实际上就等于该品牌和品牌D相比的结果,例如,品牌A的参数等于A组均值减去D组均值2.41-2.572=- 0.162。可见A,B,C的参数均小于0且有统计学意义,即它们的磨损深度均小于品牌D。
4、LSD事后多重检验;也称为两两比较;
LSD法的输出结果实际上是要求将各组均值和一个参照组进行比较。SPSS假设每一个轮胎品牌都有可能成为参照,让其他组都和该参照组进行比较。表中给出了两个轮胎组之间的平均值差异、差值的标准误,95%置信区间以及检验的P值。I表示参照组,J表示对比组。检验结果显示轮胎品牌C和D都与另外三个轮胎品牌有差异,而轮胎品牌A和B之间没有差异。
5、S-N-K事后多重检验;
LSD法的分析结果并不太容易阅读,相对而言,SNK法的两两比较结果则要清楚得多。首先SNK会将各组按照平均值大小排序,上表是按照CBAD的顺序进行排序;随后,表格将四个轮胎品牌分成3个子集,同一子集内的两组平均值两两无差别。第一子集仅由品牌C组成,是磨损深度最低的子集;第二子集由品牌B和A组成,磨损深度居中;第三子集由品牌D组成,磨损情况最为严重。最后一行给出的是子集内部各品牌进行比较的结果,因第一子集和第四自己都仅有一个品牌,因此其p值等于1,第二子集中品牌B和A比较的P值等于0.926,表示两品牌轮胎的磨损深度没有显著性差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17