
O2O与大数据引关注 互联网+商业地产如何寻求变革
过去的一年,线上巨头阿里开始布局线下,线下实体零售巨头万达也开始抢夺线上市场,一时间原本令人一头雾水的O2O成为街头巷尾的热词,大小零售商都积极布局自己的数据库、官方APP等。
但在当天的会议现场,多位业内大佬却提出了自建APP是一个“伪命题”的观点。
“互联网时代讲求开放,越开放越有价值。”阿里巴巴城市生活事业部、喵街智能商业副总裁苗峰指出,大平台、开放平台才是O2O的趋势。
“‘共享经济’时代下的地产创变”为主题的2015 中国房地产产业链主题年会暨第17 届CIHAF 中国住交会商业地产分会现场,商业地产O2O 和大数据的发展与未来引发关注。
打造生态开放平台
阿里喵街原本就是平台化模式的代表,强调合作共赢。而原本定位服务万达商业的自建平台飞凡网也表示定义将完全改变,从自建平台变为结合场景的“互联网 ”大平台。
“2015年11月底,我们有400万个APP用户,在所有渠道采集到的会员数据达到8500万,跟飞凡网达成合作关系的购物中心超过400家。我们不妨预言一下,优秀的自建平台都有可能在未来成为一个开放的大平台。”万达飞凡商业拓展副总经理冯舟表示。
越来越多的商家也意识到了分装APP没有效果。消费者今天使用下载明天就取消,大量闲置和试错后逐步开始意识到开放大平台的价值和意义。
大数据是流动的生态,越来越多的第三方大数据正逐步“松绑”,“第一方数据资源逐渐开始和第三方数据资源进行一些连接和整合,线下零售的大数据生态开始若隐若现地显现出来。”李英伟说,未来2~3年实体零售大数据生态的建立是非常深刻的趋势。
而在一年多O2O的尝试中,越来越多的从业者也发现O2O和大数据的主要目标是和人的链接,即给人带来多少价值,而不是给“楼”增加多少。
商业地产1.0阶段,市场可能更加关注具体的解决方案,比如怎么解决一些消费者在商场体验中的“痛点”,找车、定位、导航等;未来进入到2.0阶段,市场会更多考虑人的连接。“人实现连接以后,会进入第二个关键词——‘场景’。我们今天在做很多的尝试,O2O的创新实际上就是在创造更多与消费者互动和连接的场景。”李英伟表示。
李英伟预测,沿着连接的主线去增加各种各样的场景,这将是在明年甚至更长时间内O2O的创新举措。
提升线下整体经营水准
在这样的生态背景下,需要商家具备两个核心能力,首先是对大数据的理解,包括数据挖掘的能力;二是团队是不是真的具备互联网精神、互联网能力,因为无论多少平台、多好的应用,都需要团队有互联网的能力进行组合和应用。
更关键的是,商家要清楚,目前的生态系统变革下,不能指望APP或数据影响并破解困局。“尤其是甲方做事情容易陷入技术决定论,大家总是觉得我们只要有好的技术解决方案,好的技术供应商,很多的事情就可以解决,这是不对的,更多的时候还是要将重心放在团队能力的提高上,这才是最根本的。”李英伟进一步表示。
北京华润五彩城副总经理任东亮也认为,市场目前处在一个消费者换代的时代,过去传统地跟消费者互动的模式正在慢慢失效。未来利用数据技术去建立数据化的体系,是要建立在充分信息化的基础上。
更为核心的在于提升线下整体经营水准。“我认为互联网会加速线下的竞争,如果你的店面经营不行,上了互联网以后会加速死亡。”苗峰表示,互联网时代会放大线下实体的优势,也会放大它的劣势。所以无论是与喵街合作,还是与飞凡合作,实体店自身要变得很强大。
“如果商家的基础设施、管理团队、治理结构都没有准备好的话,去和阿里或者说是万达合作,是不能提高效率的。无论是喵街还是万达,最多可以帮你锦上添花,我不相信它可以雪中送炭,因为没有到这个时候。”苗峰坦言,“打铁还得自身硬”。
嘉宾观点:
O2O的小生态与大生态之辩
万达飞凡商业拓展副总经理 冯舟
购物中心和电商最核心的差异在于线上可能更加懂得消费者的需求,线下购物中心和百货商场对快速改变的消费者的内心需求把握不够精准,不够迅速。
飞凡的定位是“实体商业 互联网”的场景运营商,为购物中心提供智能软硬件的解决方案、WIFI等,可以覆盖购物中心、商超等全部业态。非凡要做的是一个结合场景与人的“互联网 ”大平台。未来优秀的自建平台都有可能在未来成为一个开放的大平台。飞凡还有一个有亮点的产品是全球招商平台,即把全球优质的商户资源和商业地产资源放在一个开放的平台上,使彼此在这个平台上完成有序、良性的交易。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13