
R语言均值,中位数和模式
在R统计分析是通过用许多内置函数来执行的。 大多数这些函数是R基本包的一部分。这些函数需要R向量作为输入参数并给出结果。
我们正在讨论本章中的函数是平均数,中位数和模式。
平均值
它是通过取的值的总和,并除以一个数据系列的数量计算的。
函数mean()是用来计算这在R语言中
语法
用于计算平均值在 R 中的基本语法是:
mean(x, trim = 0, na.rm = FALSE, ...)
以下是所使用的参数的说明:
x 是输入向量。
trim 用于删除一些要素/空格从排序向量的两端。
na.rm 用于从输入矢量删除丢失的值。
示例
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find Mean.
result.mean <- mean(x)
print(result.mean))
当我们上面的代码执行时,它产生以下结果:
[1] 8.22
应用修剪选项
当修剪参数被提供时,在向量中的值获得排序,然后观察所需要的数据从计算平均丢弃。
当trim =0.3,是从每一端的3个值将被从找到中计算删除的意思。
在这种情况下,排序矢量为(-21,-5,2,3,4.2,7,8,12,18,54)和从向量表除去,用于计算平均值的值从(-21,-5,2)左侧和从(12,18,54)右边。
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find Mean.
result.mean <- mean(x,trim=0.3)
print(result.mean
当我们上面的代码执行时,它产生以下结果:
[1] 5.55
应用NA选项
如果有缺失值,则意味着函数返回 NA。
从计算中使用 na.rm= TRUE 删除缺失值。这意味着删除 NA 值。
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5,NA)
# Find mean.
result.mean <- mean(x)
print(result.mean)
# Find mean dropping NA values.
result.mean <- mean(x,na.rm=TRUE)
print(result.mean)
当我们上面的代码执行时,它产生以下结果:
[1] NA
[1] 8.22
中位数
在一个数据串的中间最值被称为中值。median() 函数用于在 R 中计算此值。
语法
在 R 中用于计算中位数的基本语法是:
median(x, na.rm = FALSE)
以下是所使用的参数的说明:
x 是输入向量。
na.rm 用于从输入矢量删除丢失的值。
例子
# Create the vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find the median.
median.result <- median(x)
print(median.result)
当我们上面的代码执行时,它产生以下结果:
[1] 5.6
模式
模式是一个具有最高发生次数的一组数据的值。不同于平均数和中位数,模式可以同时拥有数字和字符数据。
R没有一个标准的内置函数来计算模式。因此,我们创建一个用户函数来计算在R数据集的模式,该函数将向量作为输入,并给出了模式的值输出。
示例
# Create the function.
getmode <- function(v) {
uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv)))]
}
# Create the vector with numbers.
v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)
# Calculate the mode using the user function.
result <- getmode(v)
print(result)
# Create the vector with characters.
charv <- c("o","it","the","it","it")
# Calculate the mode using the user function.
result <- getmode(charv)
print(result)
当我们上面的代码执行时,它产生以下结果:
[1] 2
[1] "it"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23