京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R做数据分析(1)_R简介_数据分析师
R语言是由 Ross Ihaka、Robert Gentleman二位创建的,这也许可以解释为什么叫R语言。现在由“R开发核心团队”负责开发。R是基于S语言的一个GNU项目。
一、 R语言介绍
R是为统计计算和作图的一门语言和环境。是一个GNU项目,和S语言和环境很相似,S语言是由BELL实验室的John Chambers和他的同事开发的。R语言可以认为是从S语言衍生而来的,他们之前有很重要的不同,但是大多数用S语言写的代码也可以在R中运行。
目前R在高校非常流行,特别是随着这几年互联网的发展,(R在一些大公司的运用得到的实践,例如:国外的google、linkdin、facebook等,国内一些大型互联网公司也在开始使用R),及随着互联网版权的意识增强,也促使了R在互联网的发展。当然R在很多领域都有很广泛的运用。
R语言是开源的,同时可以运行在各种平台上(Linux、Windows、MacOS等)。R的许多软件包是由R语言、 LaTeX、Java及最常用C语言和Fortran撰写。
可以说现在R包含各种各样的功能,可以说目前你能想到的功能,都可以找到一个或者多个R包来实现。几千个R包,哪个才最适合你呢?“最适合你自己的R包,也许就是你自己写的那个包”。
二、 R软件安装下载
CRAN地址:http://www.r-project.org/,什么是CRAN:
CRAN为Comprehensive R Archive Network(R综合典藏网)的简称。它除了收藏了R的执行档下载版、源代码和说明文件,也收录了各种用户撰写的软件包。现时,全球有超过一百个CRAN镜像站。(来源http://baike.baidu.com/view/942569.htm)
根据你的操作系统,下载相应的R语言安装文件。
下载地址:http://ftp.ctex.org/mirrors/CRAN/

R安装
三、 R语言的特点
1、变量不需要申明即可引用。
2、R语言的核心是:向量。
3、R语言是一个函数语言。
4、向量中的下标是从1开始引用的。
5、R是脚本语言、面像对象;
四、 如何学学习R语言
《R语言学习由浅入深路线图》 这篇文章大家可以参考,这篇文章简单介绍了一下R学习的资料,大家可以根据需要进行参考。那么如何才能学好R,个人理解有以下几点:
1、不要期望你能学会R中所有的包。不要把目标定的那么高。
2、关键能理解R语言的内涵。多看看CRAN上的相关文档,例如:季刊、R语言相关新闻,特别是每次版本更新的一些内容。
3、运用
如果你是做数据分析相关的工作的,一定要把学习到的R语言知识运用到你的工作中,不管你把R语言当用一门编程语言还是统计工具,用的多了,自然你就有感觉,很多东西你就记住了。
4、持续
每天花点时间写几条R代码,实现一些小功能。如果你工作上就用R,那是最完美的。
5、多看
多看别人写的代码,R运用的案例。你可以google一下R会有很多好的博客,文章。很多人都是R的GREEK。
6、开放
一定要开放、分享的心态。多与别人交流,不要总是需求,一定要学习给予。(我是我个人观点,如果要真好用到R,让R发挥价值就是必须的。)
7、总结
学到的东西,及时做好总结,可以总结成案例或者笔记,如果可以欢迎分享给大家http://bbs.pinggu.org/forum-69-1.html
五、 我对R语言的理解和看法
随时互联网的发展,特别是互联网对于版权、成本的因素考虑,因为免费、开源使越来越多的公司开始用R语言来处理数据、分析数据、完成模型等,当然这其中也伴随着对于数据价值挖掘的,特别是在大数据的背景下,想通过对数据挖掘&分析建立自己的竞争优势。
R不仅 免费还有各种各样的的功能包资源。从某种程度上讲,任何你想要的功能应该都可以找到对应的包,只是说是否完全满足,对于一些算法研究人员来说,可以在原来的代码的基础进行借鉴。这也许就是为什么R最开始主要用到高校或者学术领域(当然和国外学者、专家这种自由、开放的环境或者意识有很关系,这也许就是为什么许多开源软件都是国外出来,很少看到国内的大公司有什么好的东西开源)。
很多行业人士都说R是未来的“王道”,就像unix的发展过程一样。我觉得未来一定有属于R的一片天空,而且这种天空可以说是接近无限。所以,对于有志于从事数据挖掘、数据分析这个行业的朋友来说,掌握R是也许会成为未来的必备技能(就像现在数据分析师大多要求会:SQL)。
最后,我对R语言的理解与总结可以概括为一句话:“开源、二次加工、分享精神”。
本文来源 :CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19