
服装BI企业用不好的原因剖析
接触了许多服装企业,都已经尝试使用BI进行数据分析很多年了,但却一直用不好,我们经过深入交流,发现大家存在着一些共性的问题,在此小编和大家分享一下,希望更多的服装企业能在使用BI做服装数据分析上少走弯路。看看服装BI你真的了解没?
服装BI详情剖析
1、在应用上,大家用BI实际上是在解决的是报表的问题,而不是数据分析的问题。这个问题不仅仅是在服装企业,其实在所有企业都存在,只是服装企业会更加突出。服装企业主要盯着的就是订配销,关注的无外乎是库存与销售情况,关注的内容比较聚焦。在维度上要分门店、商品、时间,所以,这个报表就变的复杂起来。许多服装企业用服装BI做数据分析时,首先就是要将原来EXCEL报表移植到服装BI上。于是乎,大家那个叫痛苦啊,IT人员费了老鼻子劲也做不出来,业务人员还觉得奇怪,这EXCEL都能做到的事情,为什么高大上的服装BI反而做不到了呢?是IT水平的问题,还是BI产品的问题?纠结到最后,业务与IT都不满意,于是,BI产品最终成为背锅侠。
其实,我们应用服装BI的目的到底是做报表还是做服装数据分析,道理大家都知道,很简单,当然是做服装数据分析啊。可是,为什么会变成这个样子呢?这其实还是管理决策者参与不够导致的。从ERP开始,就在讲企业信息化是一把手工程,但也正是从ERP开始,领导发现,实际上这个信息系统就算上线了,与领导还是没有什么直接关系,领导要的数据或报表,还是得手工上报,这当初所有提高管理决策水平的承诺,都不见声响了。慢慢的领导也不怎么参与到信息化中来了。到了BI,本来这是为决策者直接服务的,也不再参与,而是让做报表的去参与(IT与业务报表分析人员)。于是,大量类似的对话就出现了:“这个报表是以前领导天天要看的,必须做出来!”“这个,样式能改一下吗?”“那怎么行?领导已经习惯了。”——用新工具,走老路,就走出了坎坎坷坷。大家都忽视了,我们是为目标服务的,我们的目标本应该是不管是哪一级的管理者,都可以通过BI这个工具,方便的找到决策所需要用的数据。我们用新工具,就应该修新路。——道理大家都懂,但因为缺少决策者的参与,所以,对于执行者来说,是没有办法揣测上意,自做主张的。
讲到这里了,怎么解决这个问题?——对,一定要拉上领导来参与这个系统的规划与建设!
2、在技术上,更愿意写SQL存贮过程来直接实现报表要展示的数据,而不是按主题去建分析模型。这种现象非常普遍。因为IT技术人员通常擅长于写SQL,只要某个报表的计算逻辑弄清楚了,就马上可以写SQL去实现。但是,创建分析模型,则不但需要满足当前报表的需求,还要想办法将个性需求延伸拓展到共性需求,从而形成不同主题的分析模型。因为它需要花些时间研究业务,这对于每天忙忙碌碌的IT人员来说,有些困难。但是,这种开始图简单省事的做法,到后面就会越来越难。因为,随着业务需求的不断积累,不同的报表需求,哪怕就是改其中一个小小的排序条件,也可能需要重新修改SQL脚本。而最可怕的就是,某个通用的计算规则发生改变,如售罄率原来用金额,现在用数量。所有的报表逻辑都要改,维护起来就变成了一件非常痛苦的事情。
所以,我们一定要用分析模型去解决业务数据分析的需求,而不是直接根据报表的计算逻辑去写SQL,就算刚开始要改换观念,感觉也有些顾此失彼,但长痛不如短痛,切记!
3、经验不足,导致无法持续优化。对于服装企业的IT团队来说,做服装BI项目是第一次,也是唯一一次,那么,就一定是摸着石头过河,所以,经常会走着走着得回头。回头路走多了,大家对服装BI项目就不再有信心,持续优化也就变得不再可能。很多企业的服装BI应用就局限于当初BI厂商实施留下的成果,没有再做任何优化。而事实上,企业的竞争环境在变化,领导的想法在变化,公司的业务在变化,都会导致大家对数据的要求变化。而如果服装BI的应用跟不上这些变化,就会变成摆设。
于是,有些企业说,那我们自己的IT团队能力不行,就外包吧。不得不说,这是一条捷径,但这条捷径也只能图一时之快。为什么呢?外包,就是花多少钱,办多少事。那么,只要想办事,就要先花钱。等先把钱谈好了,事可能已经又发生变化了。
关于服装BI数据分析的详情你都Get到了吗?BI应用,我们建议,企业一定要在厂商的指导下,让自己的IT掌握持续优化的能力。也就是说,不要想着只靠一头。而是要将双方的优势结合起来,既引进厂商的经验,少走弯路,又让IT能满足需求的变化,降低成本,提高响应速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23