京公网安备 11010802034615号
经营许可证编号:京B2-20210330
服装BI企业用不好的原因剖析
接触了许多服装企业,都已经尝试使用BI进行数据分析很多年了,但却一直用不好,我们经过深入交流,发现大家存在着一些共性的问题,在此小编和大家分享一下,希望更多的服装企业能在使用BI做服装数据分析上少走弯路。看看服装BI你真的了解没?
服装BI详情剖析
1、在应用上,大家用BI实际上是在解决的是报表的问题,而不是数据分析的问题。这个问题不仅仅是在服装企业,其实在所有企业都存在,只是服装企业会更加突出。服装企业主要盯着的就是订配销,关注的无外乎是库存与销售情况,关注的内容比较聚焦。在维度上要分门店、商品、时间,所以,这个报表就变的复杂起来。许多服装企业用服装BI做数据分析时,首先就是要将原来EXCEL报表移植到服装BI上。于是乎,大家那个叫痛苦啊,IT人员费了老鼻子劲也做不出来,业务人员还觉得奇怪,这EXCEL都能做到的事情,为什么高大上的服装BI反而做不到了呢?是IT水平的问题,还是BI产品的问题?纠结到最后,业务与IT都不满意,于是,BI产品最终成为背锅侠。
其实,我们应用服装BI的目的到底是做报表还是做服装数据分析,道理大家都知道,很简单,当然是做服装数据分析啊。可是,为什么会变成这个样子呢?这其实还是管理决策者参与不够导致的。从ERP开始,就在讲企业信息化是一把手工程,但也正是从ERP开始,领导发现,实际上这个信息系统就算上线了,与领导还是没有什么直接关系,领导要的数据或报表,还是得手工上报,这当初所有提高管理决策水平的承诺,都不见声响了。慢慢的领导也不怎么参与到信息化中来了。到了BI,本来这是为决策者直接服务的,也不再参与,而是让做报表的去参与(IT与业务报表分析人员)。于是,大量类似的对话就出现了:“这个报表是以前领导天天要看的,必须做出来!”“这个,样式能改一下吗?”“那怎么行?领导已经习惯了。”——用新工具,走老路,就走出了坎坎坷坷。大家都忽视了,我们是为目标服务的,我们的目标本应该是不管是哪一级的管理者,都可以通过BI这个工具,方便的找到决策所需要用的数据。我们用新工具,就应该修新路。——道理大家都懂,但因为缺少决策者的参与,所以,对于执行者来说,是没有办法揣测上意,自做主张的。
讲到这里了,怎么解决这个问题?——对,一定要拉上领导来参与这个系统的规划与建设!
2、在技术上,更愿意写SQL存贮过程来直接实现报表要展示的数据,而不是按主题去建分析模型。这种现象非常普遍。因为IT技术人员通常擅长于写SQL,只要某个报表的计算逻辑弄清楚了,就马上可以写SQL去实现。但是,创建分析模型,则不但需要满足当前报表的需求,还要想办法将个性需求延伸拓展到共性需求,从而形成不同主题的分析模型。因为它需要花些时间研究业务,这对于每天忙忙碌碌的IT人员来说,有些困难。但是,这种开始图简单省事的做法,到后面就会越来越难。因为,随着业务需求的不断积累,不同的报表需求,哪怕就是改其中一个小小的排序条件,也可能需要重新修改SQL脚本。而最可怕的就是,某个通用的计算规则发生改变,如售罄率原来用金额,现在用数量。所有的报表逻辑都要改,维护起来就变成了一件非常痛苦的事情。
所以,我们一定要用分析模型去解决业务数据分析的需求,而不是直接根据报表的计算逻辑去写SQL,就算刚开始要改换观念,感觉也有些顾此失彼,但长痛不如短痛,切记!
3、经验不足,导致无法持续优化。对于服装企业的IT团队来说,做服装BI项目是第一次,也是唯一一次,那么,就一定是摸着石头过河,所以,经常会走着走着得回头。回头路走多了,大家对服装BI项目就不再有信心,持续优化也就变得不再可能。很多企业的服装BI应用就局限于当初BI厂商实施留下的成果,没有再做任何优化。而事实上,企业的竞争环境在变化,领导的想法在变化,公司的业务在变化,都会导致大家对数据的要求变化。而如果服装BI的应用跟不上这些变化,就会变成摆设。
于是,有些企业说,那我们自己的IT团队能力不行,就外包吧。不得不说,这是一条捷径,但这条捷径也只能图一时之快。为什么呢?外包,就是花多少钱,办多少事。那么,只要想办事,就要先花钱。等先把钱谈好了,事可能已经又发生变化了。
关于服装BI数据分析的详情你都Get到了吗?BI应用,我们建议,企业一定要在厂商的指导下,让自己的IT掌握持续优化的能力。也就是说,不要想着只靠一头。而是要将双方的优势结合起来,既引进厂商的经验,少走弯路,又让IT能满足需求的变化,降低成本,提高响应速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11