京公网安备 11010802034615号
经营许可证编号:京B2-20210330
服装BI企业用不好的原因剖析
接触了许多服装企业,都已经尝试使用BI进行数据分析很多年了,但却一直用不好,我们经过深入交流,发现大家存在着一些共性的问题,在此小编和大家分享一下,希望更多的服装企业能在使用BI做服装数据分析上少走弯路。看看服装BI你真的了解没?
服装BI详情剖析
1、在应用上,大家用BI实际上是在解决的是报表的问题,而不是数据分析的问题。这个问题不仅仅是在服装企业,其实在所有企业都存在,只是服装企业会更加突出。服装企业主要盯着的就是订配销,关注的无外乎是库存与销售情况,关注的内容比较聚焦。在维度上要分门店、商品、时间,所以,这个报表就变的复杂起来。许多服装企业用服装BI做数据分析时,首先就是要将原来EXCEL报表移植到服装BI上。于是乎,大家那个叫痛苦啊,IT人员费了老鼻子劲也做不出来,业务人员还觉得奇怪,这EXCEL都能做到的事情,为什么高大上的服装BI反而做不到了呢?是IT水平的问题,还是BI产品的问题?纠结到最后,业务与IT都不满意,于是,BI产品最终成为背锅侠。
其实,我们应用服装BI的目的到底是做报表还是做服装数据分析,道理大家都知道,很简单,当然是做服装数据分析啊。可是,为什么会变成这个样子呢?这其实还是管理决策者参与不够导致的。从ERP开始,就在讲企业信息化是一把手工程,但也正是从ERP开始,领导发现,实际上这个信息系统就算上线了,与领导还是没有什么直接关系,领导要的数据或报表,还是得手工上报,这当初所有提高管理决策水平的承诺,都不见声响了。慢慢的领导也不怎么参与到信息化中来了。到了BI,本来这是为决策者直接服务的,也不再参与,而是让做报表的去参与(IT与业务报表分析人员)。于是,大量类似的对话就出现了:“这个报表是以前领导天天要看的,必须做出来!”“这个,样式能改一下吗?”“那怎么行?领导已经习惯了。”——用新工具,走老路,就走出了坎坎坷坷。大家都忽视了,我们是为目标服务的,我们的目标本应该是不管是哪一级的管理者,都可以通过BI这个工具,方便的找到决策所需要用的数据。我们用新工具,就应该修新路。——道理大家都懂,但因为缺少决策者的参与,所以,对于执行者来说,是没有办法揣测上意,自做主张的。
讲到这里了,怎么解决这个问题?——对,一定要拉上领导来参与这个系统的规划与建设!
2、在技术上,更愿意写SQL存贮过程来直接实现报表要展示的数据,而不是按主题去建分析模型。这种现象非常普遍。因为IT技术人员通常擅长于写SQL,只要某个报表的计算逻辑弄清楚了,就马上可以写SQL去实现。但是,创建分析模型,则不但需要满足当前报表的需求,还要想办法将个性需求延伸拓展到共性需求,从而形成不同主题的分析模型。因为它需要花些时间研究业务,这对于每天忙忙碌碌的IT人员来说,有些困难。但是,这种开始图简单省事的做法,到后面就会越来越难。因为,随着业务需求的不断积累,不同的报表需求,哪怕就是改其中一个小小的排序条件,也可能需要重新修改SQL脚本。而最可怕的就是,某个通用的计算规则发生改变,如售罄率原来用金额,现在用数量。所有的报表逻辑都要改,维护起来就变成了一件非常痛苦的事情。
所以,我们一定要用分析模型去解决业务数据分析的需求,而不是直接根据报表的计算逻辑去写SQL,就算刚开始要改换观念,感觉也有些顾此失彼,但长痛不如短痛,切记!
3、经验不足,导致无法持续优化。对于服装企业的IT团队来说,做服装BI项目是第一次,也是唯一一次,那么,就一定是摸着石头过河,所以,经常会走着走着得回头。回头路走多了,大家对服装BI项目就不再有信心,持续优化也就变得不再可能。很多企业的服装BI应用就局限于当初BI厂商实施留下的成果,没有再做任何优化。而事实上,企业的竞争环境在变化,领导的想法在变化,公司的业务在变化,都会导致大家对数据的要求变化。而如果服装BI的应用跟不上这些变化,就会变成摆设。
于是,有些企业说,那我们自己的IT团队能力不行,就外包吧。不得不说,这是一条捷径,但这条捷径也只能图一时之快。为什么呢?外包,就是花多少钱,办多少事。那么,只要想办事,就要先花钱。等先把钱谈好了,事可能已经又发生变化了。
关于服装BI数据分析的详情你都Get到了吗?BI应用,我们建议,企业一定要在厂商的指导下,让自己的IT掌握持续优化的能力。也就是说,不要想着只靠一头。而是要将双方的优势结合起来,既引进厂商的经验,少走弯路,又让IT能满足需求的变化,降低成本,提高响应速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29