
云计算,大数据,人工智能之间的关系
云计算、大数据、人工智能,还有什么比这几个词更火的?看到这些词,你能真正的了解它吗?在这里收集一些关于这些的信息,与大家分享。
物联网IoT(Internet of things)
物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心的创新是物联网发展的灵魂。
以下图为例,物联网大致分为以下几个层级:感知层,网络层,应用层。
感知层相当于人的感官和神经末梢,用来感知和采集应用环境中的各种数据。包括温度、湿度、速度、位置、震动、压力、流量、气体等各种各样的传感器。灵敏度和精度高,功耗低,可以无线传输是对传感层的要求。
网络层相当于人的神经系统,用来传输数据。包括各种各样的无线通讯技术和标准,比如Zigbee/BLE/Wifi/NFC/RFID /LTE等。低功耗,广域覆盖,更多连接是无线网络的发展方向。目前新的通讯技术和标准NB-IoT,LoRa,eLTE-IoT都是往这个方向努力。未来的5G会取代目前很多的无线通讯技术,一统江湖。
应用层相当于人的大脑指示和反应,通过指令反向控制输出。如设备管理,环境监测,工业控制等。
云计算(Cloud)
云计算相当于人的大脑,是物联网的神经中枢。云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
目前很多物联网的服务器部署在云端,通过云计算提供应用层的各项服务。云计算可以认为包括以下几个层次的服务:基础设施即服务(IaaS),平台即服务(PaaS)和软件即服务(SaaS)。
云计算IaaS:基础设施即服务
IaaS(Infrastructure-as-a- Service):基础设施即服务。消费者通过Internet可以从完善的计算机基础设施获得服务。例如:硬件服务器租用。
云计算PaaS:平台即服务
PaaS(Platform-as-a- Service):平台即服务。PaaS实际上是指将软件研发的平台作为一种服务,以SaaS的模式提交给用户。因此,PaaS也是SaaS模式的一种应用。但是,PaaS的出现可以加快SaaS的发展,尤其是加快SaaS应用的开发速度。例如:软件的个性化定制开发。
云计算SaaS:软件即服务
SaaS(Software-as-a- Service):软件即服务。它是一种通过Internet提供软件的模式,用户无需购买软件,而是向提供商租用基于Web的软件,来管理企业经营活动。
亚马逊是最早意识到服务价值的公司,它把服务于公司内部的基础设施,平台,技术,成熟后推向市场,为社会提供各项服务,也因此成为全球云计算市场的领头羊。
大数据(Dig Data)
大数据相当于人的大脑从小学到大学记忆和存储的海量知识,这些知识只有通过消化,吸收、再造才能创造出更大的价值。
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”.
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
人工智能AI(Artificial Intelligence)
人工智能打个比喻为一个人吸收了人类大量的知识(数据),不断的深度学习、进化成为一方高人。人工智能离不开大数据,更是基于云计算平台完成深度学习进化。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
简单总结:通过物联网产生、收集海量的数据存储于云平台,再通过大数据分析,甚至更高形式的人工智能为人类的生产活动,生活所需提供更好的服务。这必将是第四次工业革命进化的方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29