京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的人工智能
人工智能诞生至今已有60年,尽管相关算法、运算能力等都在不断完善,但数据量小、数据流通不畅等因素是制约人工智能发展的关键之一。近年来,随着互联网迅速发展,积累了海量的大数据资源,为人工智能加快“学习”、“进化”提供了重要保障。
人工智能的核心是计算机不断从经验中获取知识,学习策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验。经验越多,越有利于人工智能解决问题的能力提升。经验本质上就是数据,数据的量很大时就需要用大数据技术来处理,因此人工智能离不开大数据技术。
高考机器人Aidam
就拿这两天的“高考红人”——智能教育机器人“Aidam”来说,第一次参加高考仅仅用了9分47秒的时间就交出了134分的答卷(文科数学)。
Aidam自动解题的基础在于其对海量的数据分析、处理:包括80万套试卷,7000万道题库,80亿道题目。
Aidam是学霸君自主研发的智能教育机器人,以深度学习、专家系统和自然语言理解为核心的复杂系统。这个系统的核心在于通过学习人类的编程逻辑,熟悉人类思考和学习的方式,进而掌握解题方法。
业内人士认为,未来5-10年,人工智能或将成为教育行业变革最重要的解决方案。天价学区房以及前段时间引发热议的上海幼升小事件,背后的根源是优质教育资源的稀缺。人工智能的出现,将有助于让这个问题的解决。
打遍人类无敌手的阿尔法狗
回想当初,谷歌给初版阿尔法狗输入了3000万步人类围棋大师的走法,让其自我对弈3000万局,积累胜负经验,同时它还要在自我对弈的训练中形成全局观,并对局面做出评估。可以说阿尔法狗的每一次落子,都是大数据分析驱动下的结果。
果然,不到两年的时间,阿尔法狗以绝对优势先后战胜围棋界的樊麾、李世石、柯洁等一众职业高手。
阿尔法狗的神速进步,离不开大数据的累积与应用:将人类智慧经验变成客观的、可观的、能够精准判断、可以快速学习运用的方式。
城市大脑
2016年10月,“杭州城市数据大脑”(简称“城市大脑”)项目正式启动。即:政府部门和企业打通信息关卡,为智慧城市治理建一个共享数据的大平台。
“城市大脑”项目曾于去年9月在杭州市萧山区进行了初步试验,道路车辆通行速度相比以往平均提升了3%至5%,部分路段提升了11%。经过推算,如果依靠人力去完成这些工作,大约需要15万个交警来协同处理。
牵头企业阿里巴巴通过ET人工智能内核进行数据治理(阿里云ET的视频识别算法,可以使城市大脑能够感知复杂道路下车辆的运行轨迹,准确率达99%以上);大华股份和中控集团负责交通算法和信号灯控制执行;华三通信和富士康各提供了500台高性能服务器用于数据大脑的计算平台建设……一共13家家企业为此项目毫无保留地贡献自己的力量,从而实现对城市进行全局实时分析,自动调配公共资源,修正城市运行中的缺陷,成为治理城市的超级人工智能。
人工智能的发展,需要一个循序渐进的过程,近期人工智能之所以能取得突飞猛进的进展,不得不说是这些年来大数据长足发展的结果。当然也得益于各类感应器和数据采集技术的发展,我们才开始拥有以往难以想象的海量数据以及某一领域的极具深度的数据。而这些,都是发展“智能”的前提,毕竟数据越多,越有深度,塑造培养出的信息处理系统越聪明,这也是大数据之于人工智能的意义所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16