京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言变量
变量为我们提供了一个存储的名字,我们可以操作的项目。 R语言中的变量可以存储为原子向量,组原子矢量或许多的R-对象的组合。 一个有效的变量名称是由字母,数字和点或下划线组成。变量名以字母开头,或者数字后面没有点。
变量赋值
变量可以使用向左,向右且等于操作符来分配值。可以使用 print() 或 cat() 函数打印变量的值。cat() 函数将多个项目并成连续并打印输出。
# Assignment using equal operator.
var.1 = c(0,1,2,3)
# Assignment using leftward operator.
var.2 <- c("learn","R")
# Assignment using rightward operator.
c(TRUE,1) -> var.3
print(var.1)
cat ("var.1 is ", var.1 ,"\n")
cat ("var.2 is ", var.2 ,"\n")
cat ("var.3 is ", var.3 ,"\n")
当我们上面的代码执行时,它产生以下结果:
[1] 0 1 2 3
var.1 is 0 1 2 3
var.2 is learn R
var.3 is 1 1
注: 矢量c(TRUE,1)有逻辑和数值类的混合。因此,逻辑类强迫转换到数字类,如TRUE为1。
变量的数据类型
在R,变量本身不需要声明成任何数据类型,但它得到分配给它的是 R-对象的数据类型。所以R被称为动态类型的语言,这意味着我们可以当在程序中使用它,并可再次并改变相同变量的变量的数据类型。
var_x <- "Hello"
cat("The class of var_x is ",class(var_x),"\n")
var_x <- 34.5
cat(" Now the class of var_x is ",class(var_x),"\n")
var_x <- 27L
cat(" Next the class of var_x becomes ",class(var_x),"\n")
当我们上面的代码执行时,它产生以下结果:
The class of var_x is character
Now the class of var_x is numeric
Next the class of var_x becomes integer
查找变量
要知道目前在工作区中的可用变量,可以使用 ls()函数列出所有变量。另外,ls() 函数可以使用模式来匹配变量名称。
print(ls())
当上面的代码执行时,它产生以下结果:
[1] "my var" "my_new_var" "my_var" "var.1"
[5] "var.2" "var.3" "var.name" "var_name2."
[9] "var_x" "varname"
注: 示例输出是根据变量在环境声明来输出显示的。
在 ls() 函数可以使用模式匹配变量名。
# List the variables starting with the pattern "var".
print(ls(pattern="var"))
当上面的代码执行时,它产生以下结果:
[1] "my var" "my_new_var" "my_var" "var.1"
[5] "var.2" "var.3" "var.name" "var_name2."
[9] "var_x" "varname"
以点(.) 开始的变量是隐藏的,它们可以使用 “all.names= TRUE” 参数给 ls()函数来列出。
print(ls(all.name=TRUE))
当上面的代码执行时,它产生以下结果:
[1] ".cars" ".Random.seed" ".var_name" ".varname" ".varname2"
[6] "my var" "my_new_var" "my_var" "var.1" "var.2"
[11]"var.3" "var.name" "var_name2." "var_x"
删除变量
变量可以通过使用 rm()函数来删除。下面我们删除变量var.3。然后再打印变量时出现异常错误。
rm(var.3)
print(var.3)
当上面的代码执行时,它产生以下结果:
[1] "var.3"
Error in print(var.3) : object 'var.3' not found
所有的变量可以通过使用rm()和 ls()函数来一起删除。
rm(list=ls())
print(ls())
当上面的代码执行时,它产生以下结果:
character(0)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06