京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言做主成分分析实例
在做多样本的RNA-Seq数据中经常会用到主成分分析(PCA)来分析,那么什么是PCA呢,这个可以百度一下,大概意思如下:
主成分分析法是数据挖掘中常用的一种降维算法,是Pearson在1901年提出的,再后来由hotelling在1933年加以发展提出的一种多变量的统计方法,其最主要的用途在于“降维”,通过析取主成分显出的最大的个别差异,也可以用来削减回归分析和聚类分析中变量的数目,与因子分析类似。
比如你要做一项分析人的肥胖的因素有哪些,这时你设计了50个你觉得都很重要的指标,然而这50个指标对于你的分析确实太过繁杂,这时你就可以采用主成分分析的方法进行降维。50个指标之间会有这样那样的联系,相互之间会有影响,通过主成分分析后,得到三五个主成分指标。此时,这几个主成分指标既涵盖了你50个指标中的绝大部分信息,这让你的分析得到了简化(从50维降到3、5维)。
数据准备:
一个表达矩阵:testPCA,行为基因,列为样本
我们使用princomp()函数来做主成分分析,使用的格式为:
princomp(formula,data = NULL,subset,na.action,...)
其中formula是没有响应变量的公式,类似于回归分析和方差分析中但是没有响应的变量.data是数据框,类似于回归分析和方差分析.
使用代码如下:
head(testPCA)
pca1 <- princomp(testPCA,
cor = T)
summary(pca1,loadings=T)

从PCA结果中可以看出,前4个变量Comp.1,Comp.2,Comp.3已经贡献了89.2%的信息,Loadings中的矩阵分别对应主成分与各样本之间的系数关系,我们选择前三个主成分进行后续可视化,观察八个样本之间的关系。
library(scatterplot3d)
PCA1=pca1$loadings[,1]
PCA2=pca1$loadings[,2]
PCA3=pca1$loadings[,3]
colors=rainbow(24)
s3d=scatterplot3d(PCA1,PCA2,PCA3
#, highlight.3d = TRUE
, col.axis = "blue",angle = 40,
color=colors[seq(1,24,3)], main =
"Principal component analysis", pch = ' ')
s3d$points(PCA1,PCA2, PCA3, pch =15:22,
cex = 2,col=colors[seq(1,24,3)])
legend(s3d$xyz.convert(-0.2, -0.2, -0.2),
pch = 15:22, yjust=0,
legend =colnames(testPCA),
cex = .7,col=colors[seq(1,24,3)],bty="n")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31