京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R内存管理与垃圾清理
1.内存查看
memory.limit():查看内存大小
memory.limit(n):申请内存大小
memory.size(NA):查看内存大小
memory.size(T):查看已分配的内存
memory.size(F):查看已使用的内存
2.内存申请
在Windows开始菜单运行:
Rgui -max-mem-size 8GB
与在R GUI中执行:
memory.limit(8000)
都能申请8GB使用内存
3.垃圾清除
rm(x):从workplace中删除变量/文件x
gc():清除内存垃圾
rm(list=ls()):清除workplace中所有变量
4.提升R的性能和突破内存限制的技巧
4.1性能提升的方法
4.1.1 系统升级
升级硬件
使用64位操作系统
利用GPU
租用云计算服务器
4.1.2 开发层面的优化
算法降低算法复杂度
调用C/C++或者Fortran关键的、耗时的计算步骤
缓冲技术减少重复计算
4.1.3 使用层面的优化
充分利用R的内存机制——R的基础优化
增强R的矩阵运算——加速BLAS
并行计算
大规模数据的处理——图片内存限制
使用Revolution R Enterprise(RRE)
4.2 充分利用R的内部机制优化性能
4.2.1向量化
向量化的代码,不要用循环!
利用矩阵运算
利用内置的向量化函数,比如exp、sin、rowMeans、rowSums、colSums、ifelse等
利用Vectorize函数将非向量化的函数改装为向量化的函数
*apply函数族:apply、lapply、sapply、tapply、mapply等
plyr和dplyr包Rstudio发布的data wrangling cheat sheet
##利用矩阵运算
n <- 100000
x1 <- 1:n
x2 <- 1:n
y <- vector()
system.time(
for(i in 1:n){y[i] <- x1[i] + x2[i]}
)
system.time(y <- x1 + x2)
## 利用向量化运算
## 内置的向量化函数
v <- 1:100000
result <- rep(1:100000)
system.time(
for(i in 1:100000){result[i] <- sin(v[i])}
)
system.time(result <- sin(v))
## 利用rowMeans、rowSums、colSums、colMeans等函数对矩阵或数据库做整体处理
colSums(iris[,1:4])
利用R内置的向量化函数,自定义向量化函数,只要在函数定义时每个运算是向量化的。但是在函数定义时用了逻辑判断语句,就会破坏的向量化特征。
func <- function(x){
if(x %% 2 == 0){
ret <- TRUE
}else{
ret <- FALSE}
return(ret)
}
func(34)
func(c(1,2,3,4))
## Warning message:
## In if (x%%2 == 0) { :
## the condition has length > 1 and only the first element will be used
## 在函数的定义中有if语句,不能接受向量作为判断的条件,否则判断第一个元素。
## 利用ifelse函数做向量化的判断
myfunc <- function(x){
ifelse(x %% 2 == 0,TRUE,FALSE)
}
myfunc(c(1,2,3,4))
##利用Vectorize函数将非向量化的函数改装为向量化的函数
funcv <- Vectorize(func)
funcv(c(1,2,3,4))
##利用sapply函数向量化运算
sapply(c(1,2,3,4),func)
4.2.2预先给对象分配内存
R为解释性语言,也是动态语言,如果不事先指定对象的类型和长度,在运算过程会动态分配内存,提高灵活性,但降低了效率。
尽量减少cbind、rbind的使用
## 求出10000个斐波那契数
x <- c(1,1)
i <- 2
system.time(
while(i<10000){
new <- x[i] + x[i-1]
x <- cbind(x,new)
i <- i + 1
}
)
## 指定类型和长度
x <- vector(mode="numeric",100000)
x[1] <- 1
x[2] <- 1
system.time(
while(i<10000){
i <- i + 1
x[i] <- x[i-1] + x[i-2]
}
)
4.2.3避免内存拷贝
假设我们有许多彼此不相关的向量,但因为一些其他的原因,我们希望将每个向量的第三个元素设为8,既然它们是互不相关的,甚至可能具有不同的长度,我们也许会考虑将它们放在一个列表中:
m <- 5000
n <- 1000
z <- list()
for(i in 1:m) z[[i]] <- sample(1:10, n, replace = T)
system.time(for(i in 1:m) z[[i]][3] <- 8)
## 把这些向量一起放到矩阵中
z <- matrix(sample(1:10, m * n, replace = T),nrow = m)
system.time(z[,3] <- 8)
4.2.4删除临时对象和不再用的对象
rm()删除对象
rm(object)删除指定对象,rm(list = ls())可以删除内存中的所有对象
gc()内存垃圾回收
使用rm(object)删除变量,要使用gc()做垃圾回收,否则内存是不会自动释放的。invisible(gc())不显示垃圾回收的结果
4.2.5分析内存的函数
ls()列出特定环境中的对象
object.size()返回R对象的大小(近似的)
memory.profile()分析cons单元的使用情况
memory.size()监测全部内存的使用情况(仅Windows下可用)
memory.size(max=T)返回历史占用过的最大内存;memory.size(max=F)返回目前占用的内存。未做垃圾清理时,已使用内存和已分配内存同步增加,但在垃圾清理后rm(list=ls());gc(),已使用内存会减少,而已分配给R的内存不会改变。
memory.limit()系统可分配的内存上限(仅Windows下可用)
memory.limit(newLimit)更改到一个新的上限。 注意,在32位的R中,封顶上限为4G,你无法在一个程序上使用超过4G (数位上限)。这种时候,可以考虑使用64位的版本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06