京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2017大预测:大数据、物联网与人工智能
物联网、大数据和人工智能,无疑是2017最被期待的几大趋势。每个人都在谈论这些趋势,但真正发生了什么?我们将分为上下两篇来一一解读这些预测。今天分享的是大数据、物联网领域、人工智能的一些预测分析。
毫无疑问,物联网、大数据和人工智能,无疑是2017最被期待的几大趋势。从仍然处于分散状态的物联网到计算范式的快速波动,再到人工智能正在如何重塑我们的生活方式,每个人都在谈论这些趋势,但真正发生了什么?
以下是您需要怎样理解这些趋势,并如何从一个消费者的角度面对它们引领的未来。
大数据
按照Wikipedia的定义,大数据是一个数据集,它异常庞大或复杂,传统的数据处理应用软件完全不足以应对。由于数据集非常庞大,所面临的挑战包括抓取、存储、分析、数据管理、搜索、共享、传输、可视化、查询、更新和信息隐私等等。大数据的价值在于可以进一步用于参考预测分析,用户行为分析,高级数据方法(包括人工智能),而不仅仅停留在数据集的大小本身。
2017年,期待区块链技术应用的出现,特别是在分类帐系统中以代码编写的智能契约合同。这些通常比传统合同更安全和不可逆转,但同时在引用和执行这些合同时产生更高效率。
另外,数据自助服务解决方案的兴起也将使普通架构的公司能够分析其数据,而无需建立数据科学部门。这对于没有预算雇用数据科学家的中小企业来说是非常有价值的,要知道数据科学家在2016年是非常抢手的职业。
hadoop的使用也迅速下降,这个框架允许大型数据集的分布式处理,因为雇用必要的人才来支持这个框架在内部被证明是具有挑战性的。在云上使用应用程序来减少数据中心的支出成为更优化的选择,因而数据自助服务模式也更受欢迎。
研究公司Gartner Inc.在其数据分析数据管理解决方案魔力象限中指出“由于灵活性,敏捷性和运营定价模式,预期正在转向云作为替代部署选项。”
因此,由于更多的公司能够为员工提供从结构化和非结构化数据获得的正确知识,所以可以期待非公司高管人员同样更容易洞察公司的运营情况。
这是一把双刃剑,但随着大数据技术的发展,高管们的期望将是立即获得数据,而不是等待批量分析报告。因此,在对近乎实时产生的数据做出可行性分析产生的压力也随之而来。
物联网
福布斯将物联网描述为连接任何具有开启和关闭功能的设备(和/或彼此)的概念。这就是说,只要设备具有开关,就可能将其配置为物联网的一部分。
想象“智能家居”设备,如智能锁,当它检测到你的手机在附近时,就自动解锁;或者在检测到有移动时,自动开灯。
在2016年,我们看到来自许多具有类似解决方案的供应商的新突破。在2017年,我们预测这些供应商中的一些将战胜另一些,这意味着市场上只留下少数供应商。随着供应商的减少,我们预计监管和标准化也将发挥更大作用。与此同时,安全问题也将日益凸显,早在去年,乌克兰西部的一个电网就遭到了来自IoT网络的攻击破坏;关于无人驾驶汽车遭遇黑客的研究也引发了关注,所以2017年,物联网领域的安全问题可能有新动向和突破。
我们预测,两个主要领域的应用可能将成为物联网的焦点,即智能城市和智能家居。在智能家居部分,由于带宽是任何IoT技术工作的先决条件,预计今年网络管理网格或类似网状产品将有简易化的趋势。
这正是非营利蓝牙特别兴趣小组品牌和开发商营销副总裁Errett Kroeter所希望的,“目前网格划分的其他一些标准是难以设立的。我们的目标是保持网状网络简单,以便人们真正想要使用它们。”
物联网的发展,并与其他产生大量数据的设备和系统相结合,正在加速让人工智能成为现实,让人们得以真正从海量信息中创造出意义和价值。
人工智能
人工智能,在字典里的定义是机器模拟智能的人类行为的能力。虽然我们在2016年已经看到了AI的大幅进步,但我们预测2017将迎来AI的一个爆发。去年,我们看到亚马逊的Alexa已经能够以跟人对话的方式表现人工智能,而现在,Alexa已经进入了超过五百万个家庭。你可以向Alexa询问天气,或让Ta帮你叫车等等。这意味着,去年,AI已经进入主流用户的实际应用阶段。
然而,医疗行业人工智能的发展还有很多。专注于医疗健康AI领域的创业公司从2012年的20个增长到2016年的近70个。显然,值得重点注意的有iCarbonX,旨在建立数字生活的生态系统,以实现个性化的健康管理系统,和Flatiron Health,旨在通过组织化数据对付癌症,帮助肿瘤学家提高护理质量。
在医疗健康领域的技术巨头飞利浦,目前大约有百分之六十的研究人员,开发人员和软件工程师正在致力于医疗信息学领域的创新工作,其中大部分人员正在研究人造智能在当前和未来医疗创新中的应用。
医疗健康人工智能应用趋势主要集中在成像和诊断,人工智能可以帮助您发现人们看不到的微妙细节和图像变化。这越来越成为一个拥挤的行业细分。使用大数据集,帮助预防健康人群和处于慢性病危险中人群的健康恶化也是一个重点领域。
飞利浦首席创新和策略官Jeroen Tas认为“AI有助于放射科医师为病例准备相关信息,并确定患者状况的微妙变化。另一个领域是重症监护病房,人工智能可以帮助确定急性发作的早期迹象,或是心脏骤停等急性发作。
Tas也声称“可以通过将遗传信息与病理学、医学图像、实验室结果、家族史数据和之前的治疗相结合,而创建更丰富的患者图片。这些数据可以在AI的帮助下进行组织,从而有助于帮助临床医生做出更准确的诊断,并支持个性化的治疗。”
软件工程师、设计师和其他领域专家组成的多学科团队似乎已经为放射科医师创建并推出了首个经过验证的应用程序。在远程病人监护中,人工智能可以实现虚拟护理,包括虚拟护理助理等工作。
2017与未来
物联网、大数据和人工智能都在不断精进和取得突破,并且越来越接近商业模式和大众化应用。而当它们进入普通人的日常生活时,三个趋势将进一步融合和交叉,从而提供更强大、流畅、符合实际应用的产品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27