京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据无疑是未来影响各行各业发展的最受瞩目的技术之一。根据IBM的一项研究,过去两年生成的信息占整个人类历史信息总量的百分之九十。换言之,大数据的体量已经达到了传统数据库管理系统无法有效处理的程度。人们无论是使用手机,还是进行网络购物,都会留下自己的数字足迹。
数据信息的大爆炸,无疑将引发企业的巨大管理变革。“应该说,大数据会让企业更好地理解消费者,同时让决策变得更加有效。当然,它带来的挑战也不容小觑。”埃森哲战略咨询全球董事总经理马克·斯佩尔曼在本届达沃斯论坛上向记者表示,“如果企业忽视了这些数据,将会引发巨大的竞争风险。”
那么,大数据将为商业世界带来怎样的本质性的变化?
掘金大数据
眼下,各个行业都在产生数据,现代社会的数据量正持续地以前所未有的速度增加着。与此同时,数据的类型变得难以计数,包括文本、微博、传感器数据、音频、视频等,各种形式的数据都出现了爆炸性增长。
传统的数据分析,是通过提出假设然后获得相应数据,最后通过数据分析来验证假设。而大数据恰恰相反,它是从收集的海量数据中,通过算法将这些来自不同渠道、格式的数据进行直接分析,从中寻找到数据之间的相关性。简单而言,大数据更偏重于发现,以及猜测、印证的循环逼近过程。
一方面,大数据有助于人们发现事物的个体特性,并针对每一个个体提供差异化的解决方案;另一方面,大数据研究也能帮助人们从大量个体的差异变化中,揭示其中存在的难以察觉的规律。
“打个比方,当一辆高铁在行驶过程中,大数据技术是通过各个外部渠道的实时数据来分析高铁的安全性。在分析的同时,火车仍在行驶,不会停下。”马克·斯佩尔曼表示,“而传统的分析方法,是一定要等出现事故后才进行追溯分析。”
马克同时坦言,驾驭大数据的能力并非那么容易获得。很多时候,传统的商业智能系统与分析软件,在面对视频、图片、文字等非结构化数据时,往往束手无策,缺少有效的分析工具和模型。
“一直以来,大数据技术的难点并非在数据的收集上,而是如何利用这些数据。”马克称,“企业必须去芜存菁,将数据转化为正确的商业决策,才能与竞争对手形成差异化。”
就这一点来说,全球最大的拍卖网站eBay的做法颇为典型。譬如,一位年轻的女性早上10点在星巴克浏览eBay网站,eBay应该推送给她什么样的商品呢?事实上,eBay此前已经研究了各种不同情形下的不同购物模式,它可以从用户以往的浏览记录里推断她想要什么样的商品,也可以从设定的成百上千种情景模型中计算出用户可能的需求;或是对照另一位有着相似特点的女性用户,看她当时买过什么样的商品,从而判断出这位用户潜在的需求。在综合各种考量因素后,eBay的后台往往在短短几秒内将商品页面推送给用户。
变革与挑战
通常情况下,获得的信息越多越有利于企业做出明智的决策。但很多时候,数据量过大、数据模型欠缺,会让分析的结果与真实状况大相径庭。就eBay而言,其基于数据分析后“猜错”的情况非常非常多。
据专家测算,数据分析师的50%~80%的时间都花在了处理数据上。即便如此,数据搜集的偏差、误差积累叠加、假关联性、数据外生性等问题,纷纷“污染”着分析运算的结果。
在此基础上,全球数据目前以每两年翻一番的速度递增,2007年时,全球传感器获取的数据就超过了存储总量。大数据的存储成本很高,而要获取一些新数据,就必须丢掉旧数据。这同样不利于数据的分析与研究。
此外,来自各种传感器、文档、网页、数据库的数据,大多是不同的格式。而这些数据要被软件理解和分析,必须被转换为统一格式。
将各类数据进行格式统一,又是一个严峻的挑战。数据和人类语言一样都具有模糊性,有些数据人们知道是什么意思,计算机却不能识别。于是,很多时候,人们不得不一次又一次地重复数据转化的工作。
相比于大数据带来的技术挑战,更大的难题来自于决策的变化。在信息有限、获取成本高昂且没有被数字化的时代,企业内作重大决策的人往往都是组织的最高层,或是外部拥有专业技能和显赫履历的智囊团。时至今日,高管的决策仍然更多地依赖个人经验和直觉,而不是基于数据。但到了大数据时代,数据分析会直接影响组织怎样做决策、谁来做决策,从而减弱个人的共识性。一个明显例子是,在媒体业,《赫芬顿邮报》和Gawker网站上传播的新闻通常取决于数据,而不再取决于编辑和记者的新闻敏感度。数据比有经验的记者更能揭示出哪些是符合大众口味的新闻。
不过,大多数组织都无法轻松地完成这一转变。在9月10日举办的达沃斯论坛上,普华永道发布报告称,调查显示仅有三分之一高管们表示,他们在上一次制定重大决策时采用了数据和分析。虽然有58%的高管们在决策制定上,还是依据直觉、经验、建议以及在企业中的其他经验,但43%的高管们承认,那些拥有高度数据驱动的企业,在过去两年的决策制定获得了很大的提升。所有高管们都表示,未来两年将优先考虑对高质量数据分析的投入,以更好的制定决策。
“应该说,大数据并不会完全取代个体做决策,即便取代,那也有很长的路要走。”马克指出,“但大数据会改变人们做决策的内容和方向,会对管理者的知识结构和分析能力提出更高要求。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19