
【SAS宏】使用WOE和IV实现风险因素筛选
在信用风险评估领域,信用评分卡模型在国内外都是一种非常成熟的预测模型,无论是使用传统的Logistic回归建模乃至一些使用Neural networks算法建模,变量筛选都是整个建模过程中至关重要的一步。建模工作人员通过变量筛选的结果能够迅速识别那些最具预测能力的风险因素。
Core concepts
首先介绍一下WOE(Weight Of Evidence)
一般情况下我们将违约客户标记为1,正常客户标记为0。那么WOE其实就是自变量取某个值时对违约比例的一重影响。其计算公式如下:
通过WOE的计算公式可以发现其反映的是在自变量每个分组下坏客户对好客户的比例与总体坏客户对好客户占比之间的差异,所以我们可以直观的认为WOE蕴含了自变量取值对于应变量(0,1)的影响。同时,WOE的计算形式与Logistic regression中的Logit变换非常相似,故可直接使用自变量的WOE值代替原自变量。
想必有的读者已经发现WOE无法对连续变量进行转换,事实上对于连续变量(或者分类繁杂的离散变量),通常使用区间切分的方式将其转换成离散形式,进而通过聚类的方法完成区间的切分,并进行最终的WOE计算。
然后介绍一下IV值(Information Value)
IV值衡量的是某变量所含的信息量,其计算公式如下:
通过公式可以看到IV值其实是WOE值的一个加权求和,其值的大小决定了该自变量对于目标变量的影响程度(不难发现IV值公式和信息熵的公式非常相似)。
Advantages
相比其他变量筛选方法,WOE和IV值有两大优势:
它可以对所有分类变量,顺序变量以及连续变量统一进行预测能力的计量。
可以对缺失值进行处理,将其看作一类即可分析信息缺失对于风险是否有影响
Macro
%macroIV(dataset,varnum);
proc sql;
select sum(case when target=1then1else0end), sum(case when target=0then1else0end), count(*) into :tot_bad, :tot_good, :tot_both
from &dataset.;
quit;
/*循环计算每个变量的WOE和IV*/
%doi=1%to&varnum.;
/*计算WOE*/
proc sql;
create table woe&i as
(select"x&i"as variable,
x&i as tier,
count(*) as cnt,
count(*)/&tot_both as cnt_pct,
sum(case when target=0then1else0end) as sum_good,
sum(case when target=0then1else0end)/&tot_good as dist_good,
sum(case when target=1then1else0end) as sum_bad,
sum(case when target=1then1else0end)/&tot_bad as dist_bad,
log((sum(case when target=0then1else0end)/&tot_good)/(sum(case when
target=1then1else0end)/&tot_bad))*100as woe,
((sum(case when target=0then1else0end)/&tot_good)-(sum(case when
target=1then1else0end)/&tot_bad))
*log((sum(case when target=0then1else0
end)/&tot_good)/(sum(case when target=1then1else0end)/&tot_bad)) as pre_iv,
sum(case when target=1then1else0end)/count(*) as outcome
from &dataset.
group by x&i
)
order by x&i;
quit;
/*计算IV*/
proc sql;
create table iv&i as select"x&i"as variable,
sum(pre_iv) as iv
from woe&i;
quit;
%end;
/*合并IV结果*/
data iv;
length variable$5.;
set iv1-iv&varnum.;
run;
/*根据IV值排序*/
proc sort data=iv;
by decending iv;
quit;
%mend;
Results
为了方便,这里就例举只有10个风险因素的例子,通过结果可以得到IV值由高到低的一个排序以及相应变量的数据缺失情况。
那我们应该如何评价以上10个变量呢?
下表则是公认的评价IV值的关系表(By Siddiqi)。
事实上,IV值小于0.02的变量将被程序自动剔除,因为这些变量被认为是没有预测能力的。另外,值得一提的是IV值大于0.5是可疑的,需要综合分析该变量后谨慎选择。
Final selection
最终选择进入模型的变量不仅需要较高的IV值,还需要考虑数据缺失率,变量分布,模型解释能力等。
Conclusion
根据实践验证,经过WOE变化之后的建模效果及模型的稳定性会比不进行变化的模型有一定的提升,事实上使用WOE来对自变量做编码的一大目的就是使得辨识度最大化。另外,WOE变化之后,自变量具备了标准化的性质,从而自变量各取值之间可以直接通过WOE进行比较,同时,不同自变量之间的各种取值也可以直接通过WOE进行比较。
通过WOE和IV值的计算,我们可以更直观地理解各自变量对目标变量的作用效果和方向,同时提升最终的预测效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18