
【SAS宏】使用WOE和IV实现风险因素筛选
在信用风险评估领域,信用评分卡模型在国内外都是一种非常成熟的预测模型,无论是使用传统的Logistic回归建模乃至一些使用Neural networks算法建模,变量筛选都是整个建模过程中至关重要的一步。建模工作人员通过变量筛选的结果能够迅速识别那些最具预测能力的风险因素。
Core concepts
首先介绍一下WOE(Weight Of Evidence)
一般情况下我们将违约客户标记为1,正常客户标记为0。那么WOE其实就是自变量取某个值时对违约比例的一重影响。其计算公式如下:
通过WOE的计算公式可以发现其反映的是在自变量每个分组下坏客户对好客户的比例与总体坏客户对好客户占比之间的差异,所以我们可以直观的认为WOE蕴含了自变量取值对于应变量(0,1)的影响。同时,WOE的计算形式与Logistic regression中的Logit变换非常相似,故可直接使用自变量的WOE值代替原自变量。
想必有的读者已经发现WOE无法对连续变量进行转换,事实上对于连续变量(或者分类繁杂的离散变量),通常使用区间切分的方式将其转换成离散形式,进而通过聚类的方法完成区间的切分,并进行最终的WOE计算。
然后介绍一下IV值(Information Value)
IV值衡量的是某变量所含的信息量,其计算公式如下:
通过公式可以看到IV值其实是WOE值的一个加权求和,其值的大小决定了该自变量对于目标变量的影响程度(不难发现IV值公式和信息熵的公式非常相似)。
Advantages
相比其他变量筛选方法,WOE和IV值有两大优势:
它可以对所有分类变量,顺序变量以及连续变量统一进行预测能力的计量。
可以对缺失值进行处理,将其看作一类即可分析信息缺失对于风险是否有影响
Macro
%macroIV(dataset,varnum);
proc sql;
select sum(case when target=1then1else0end), sum(case when target=0then1else0end), count(*) into :tot_bad, :tot_good, :tot_both
from &dataset.;
quit;
/*循环计算每个变量的WOE和IV*/
%doi=1%to&varnum.;
/*计算WOE*/
proc sql;
create table woe&i as
(select"x&i"as variable,
x&i as tier,
count(*) as cnt,
count(*)/&tot_both as cnt_pct,
sum(case when target=0then1else0end) as sum_good,
sum(case when target=0then1else0end)/&tot_good as dist_good,
sum(case when target=1then1else0end) as sum_bad,
sum(case when target=1then1else0end)/&tot_bad as dist_bad,
log((sum(case when target=0then1else0end)/&tot_good)/(sum(case when
target=1then1else0end)/&tot_bad))*100as woe,
((sum(case when target=0then1else0end)/&tot_good)-(sum(case when
target=1then1else0end)/&tot_bad))
*log((sum(case when target=0then1else0
end)/&tot_good)/(sum(case when target=1then1else0end)/&tot_bad)) as pre_iv,
sum(case when target=1then1else0end)/count(*) as outcome
from &dataset.
group by x&i
)
order by x&i;
quit;
/*计算IV*/
proc sql;
create table iv&i as select"x&i"as variable,
sum(pre_iv) as iv
from woe&i;
quit;
%end;
/*合并IV结果*/
data iv;
length variable$5.;
set iv1-iv&varnum.;
run;
/*根据IV值排序*/
proc sort data=iv;
by decending iv;
quit;
%mend;
Results
为了方便,这里就例举只有10个风险因素的例子,通过结果可以得到IV值由高到低的一个排序以及相应变量的数据缺失情况。
那我们应该如何评价以上10个变量呢?
下表则是公认的评价IV值的关系表(By Siddiqi)。
事实上,IV值小于0.02的变量将被程序自动剔除,因为这些变量被认为是没有预测能力的。另外,值得一提的是IV值大于0.5是可疑的,需要综合分析该变量后谨慎选择。
Final selection
最终选择进入模型的变量不仅需要较高的IV值,还需要考虑数据缺失率,变量分布,模型解释能力等。
Conclusion
根据实践验证,经过WOE变化之后的建模效果及模型的稳定性会比不进行变化的模型有一定的提升,事实上使用WOE来对自变量做编码的一大目的就是使得辨识度最大化。另外,WOE变化之后,自变量具备了标准化的性质,从而自变量各取值之间可以直接通过WOE进行比较,同时,不同自变量之间的各种取值也可以直接通过WOE进行比较。
通过WOE和IV值的计算,我们可以更直观地理解各自变量对目标变量的作用效果和方向,同时提升最终的预测效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27