京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【R语言】单一样本推断问题
非参数统计概念:
在实际问题中,对数据的分布形式和统计模型难以作出比较明确的假定,最多只能对总体的分布做出类似于连续性型分布或者对某点对称等一般性假定。这种不假设总体分布的具体形式,尽量从数据(样本)本身获得所需要的信息,通过估计而获得分布的结构,并逐步建立对事物的数学描述和统计建模的方法称为非参数方法。
单一样本的推断问题:
符号检验
符号检验所关心的就是通过符号“+”“-”的个数来进行统计推断
eg:假设某城市16座欲出售的楼盘均价(单位:百元 /平方米)
36 32 31 25 28 36 40 32 41 26 35 35 32 87 33 35
问:该地盘楼盘价格是否与媒体公布的3700元/平方米说法相符?
分析:
总体均值的点估计是样本均值,总体中位数的点估计是样本中位数,由于中位数的稳健性,将37理解为总体的中位数,则假设问题为:
H0:M=37 H1: M不等于37(待检验的中位数值)
假设:
S+:位于37右边的个数 S-: 位于37左边的个数
令K=min{S+,S-},且K服从p=0.5的二项分布
R代码:
##1.S-为检验统计量
sign1.test = function(x,pi,q0){
s1 = sum(x<q0) #S-的个数
s2 = sum(x>q0) #S+的个数
n = s1+s2
p1 = pbinom(s1,n,pi) ### 取检验统计量K=S-,计算 P(K<=s1)
p2 = 1-pbinom(s1-1,n,pi) ### 计算 P(K>=s1)
if(p1 < p2){ m1 = "one tail test:H1: Q > q0"
}else{
m1 = "one tail test:H1: Q < q0"
}
p.value = min(p1,p2)
m2 = "two tails test"
p.value2 = 2*p.value
list(sign.test.type = m1,p.values.of.one.test = p.value,p.value.of.two.tail.test = p.value2)
}
##以上便构建了符号检验的函数,接下来可以直接调用
data=c(36,31,25,28,36,40,32,41,26,35,35,32,87,33,35,32)##赋值
x=median(data)##获取样本中位数
sign1.test(data,0.5,37)
结果解读:
p=0.02127<0.05(显著性水平),拒绝H0,认为该地盘楼盘价格是否与媒体公布的3700元/平方米存在显著差异。
趋势检验
对于趋势分析,我们用一些数对来反映前后数据的变化。为保证数对同分布,前后两个数的间隔应该固定;为保证数对不受局部干扰,前后两个数的间隔应该较大。Cox-Staut趋势检验,是以数列中位于中间位置的数为拆分点,前后两两组成数对。
例:一个住宅小区的夜间噪音长期一直保持在30分贝。后来附近有建筑工地施工。数据是连续12天夜间在该小区所测得的噪声水平(分贝)。
30,31,33,35,31,30,68,60,65,67,66,64
请问:该建筑工地是否提高了小区的噪声水平?
建立假设:
Ho:该建筑工地没有提高小区的噪声水平
H1:该建筑工地提高了小区的噪声水平
检验统计量选取:
S=min{S+,S-}
S+:每一数对前后两值之差为正的个数
S-:每一数对前后两值之差为负的个数
R代码:
CS.test = function(x){
m = length(x)
c = if(m/2-round(m/2)==0){m/2}else{(m+1)/2} ### 此处亦可用floor(m/2)代替round(m/2)
d = if(m/2-round(m/2)==0){x[1:c]-x[(c+1):m]}else{x[1:(c-1)]-x[(c+1):m]}
n1 = length(d[which(d > 0)]) ### n1 = length(which(d > 0))
n2 = length(d[which(d < 0)])
n = n1+n2
s1 = sum(sign(d)== 1)
s2 = sum(sign(d)== -1)
if(n1 > n2){
m1 = "one tail test:H1: decreasing"
p.value = pbinom(n2,n,0.5)
}else{
m1 = "one tail test:H1: increasing"
p.value = pbinom(n1,n,0.5)
}
m2 = "two tails test"
s = min(s1,s2)
p.value2 = 2*pbinom(s,n,0.5)
if(n1==n2){p.value = 0.5;p.value2 = 1}
list(sign.test.type = m1,p.values.of.one.test = p.value,p.value.of.two.tail.test = p.value2)
}
上述就是Cox-Staut检验的算法代码
代入数据:
x=c(30,31,33,35,31,30,68,60,65,67,66,64)
结果分析:
单边检验P=0.015625<0.05(显著性水平)
故拒绝H0,认为该建筑工地提高了小区的噪声水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06