
【R语言】单一样本推断问题
非参数统计概念:
在实际问题中,对数据的分布形式和统计模型难以作出比较明确的假定,最多只能对总体的分布做出类似于连续性型分布或者对某点对称等一般性假定。这种不假设总体分布的具体形式,尽量从数据(样本)本身获得所需要的信息,通过估计而获得分布的结构,并逐步建立对事物的数学描述和统计建模的方法称为非参数方法。
单一样本的推断问题:
符号检验
符号检验所关心的就是通过符号“+”“-”的个数来进行统计推断
eg:假设某城市16座欲出售的楼盘均价(单位:百元 /平方米)
36 32 31 25 28 36 40 32 41 26 35 35 32 87 33 35
问:该地盘楼盘价格是否与媒体公布的3700元/平方米说法相符?
分析:
总体均值的点估计是样本均值,总体中位数的点估计是样本中位数,由于中位数的稳健性,将37理解为总体的中位数,则假设问题为:
H0:M=37 H1: M不等于37(待检验的中位数值)
假设:
S+:位于37右边的个数 S-: 位于37左边的个数
令K=min{S+,S-},且K服从p=0.5的二项分布
R代码:
##1.S-为检验统计量
sign1.test = function(x,pi,q0){
s1 = sum(x<q0) #S-的个数
s2 = sum(x>q0) #S+的个数
n = s1+s2
p1 = pbinom(s1,n,pi) ### 取检验统计量K=S-,计算 P(K<=s1)
p2 = 1-pbinom(s1-1,n,pi) ### 计算 P(K>=s1)
if(p1 < p2){ m1 = "one tail test:H1: Q > q0"
}else{
m1 = "one tail test:H1: Q < q0"
}
p.value = min(p1,p2)
m2 = "two tails test"
p.value2 = 2*p.value
list(sign.test.type = m1,p.values.of.one.test = p.value,p.value.of.two.tail.test = p.value2)
}
##以上便构建了符号检验的函数,接下来可以直接调用
data=c(36,31,25,28,36,40,32,41,26,35,35,32,87,33,35,32)##赋值
x=median(data)##获取样本中位数
sign1.test(data,0.5,37)
结果解读:
p=0.02127<0.05(显著性水平),拒绝H0,认为该地盘楼盘价格是否与媒体公布的3700元/平方米存在显著差异。
趋势检验
对于趋势分析,我们用一些数对来反映前后数据的变化。为保证数对同分布,前后两个数的间隔应该固定;为保证数对不受局部干扰,前后两个数的间隔应该较大。Cox-Staut趋势检验,是以数列中位于中间位置的数为拆分点,前后两两组成数对。
例:一个住宅小区的夜间噪音长期一直保持在30分贝。后来附近有建筑工地施工。数据是连续12天夜间在该小区所测得的噪声水平(分贝)。
30,31,33,35,31,30,68,60,65,67,66,64
请问:该建筑工地是否提高了小区的噪声水平?
建立假设:
Ho:该建筑工地没有提高小区的噪声水平
H1:该建筑工地提高了小区的噪声水平
检验统计量选取:
S=min{S+,S-}
S+:每一数对前后两值之差为正的个数
S-:每一数对前后两值之差为负的个数
R代码:
CS.test = function(x){
m = length(x)
c = if(m/2-round(m/2)==0){m/2}else{(m+1)/2} ### 此处亦可用floor(m/2)代替round(m/2)
d = if(m/2-round(m/2)==0){x[1:c]-x[(c+1):m]}else{x[1:(c-1)]-x[(c+1):m]}
n1 = length(d[which(d > 0)]) ### n1 = length(which(d > 0))
n2 = length(d[which(d < 0)])
n = n1+n2
s1 = sum(sign(d)== 1)
s2 = sum(sign(d)== -1)
if(n1 > n2){
m1 = "one tail test:H1: decreasing"
p.value = pbinom(n2,n,0.5)
}else{
m1 = "one tail test:H1: increasing"
p.value = pbinom(n1,n,0.5)
}
m2 = "two tails test"
s = min(s1,s2)
p.value2 = 2*pbinom(s,n,0.5)
if(n1==n2){p.value = 0.5;p.value2 = 1}
list(sign.test.type = m1,p.values.of.one.test = p.value,p.value.of.two.tail.test = p.value2)
}
上述就是Cox-Staut检验的算法代码
代入数据:
x=c(30,31,33,35,31,30,68,60,65,67,66,64)
结果分析:
单边检验P=0.015625<0.05(显著性水平)
故拒绝H0,认为该建筑工地提高了小区的噪声水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03