京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS中的协方差分析
所谓的协方差分析,就是在方差分析的基础上加上协变量这一额外因素,而方差分析则只考虑组变量这一因素。协变量可以有一个,也可以有多个。
在这篇文章中,我只讲述单变量的协方差分析。在医学上通常用来判断治疗前后带来的差异性结果是否与治疗前的结果是否存在线性关系,如果存在线性关系,则通过线性模型去掉这一因素所带来的影响。
以人体增重为例,假如在服用某种药物之前体重为X,服用药物之后体重为X1,则减肥效果通常是用Y = X - X1来表示。那么X则称之为协变量。因为在比较不同组间的减肥结果的时候我们需要去除服药前体重的不同而带来的误差,协方差模型就是通过对Y和X以及组变量CLASS建立一个线性回归模型,通过模型来求得X的回归系数β,然后通过Y-β(X - X平均值)得到调整之后的Y,通过这一调整,使得由于不同的疗前体重所带来的误差被剔除,相当于使得大家在疗前都处于同一水平上,进而可以以调整后的Y对组间的减肥效果进行方差分析。
在SAS里,可以通过各种过程步来进行求解,例如reg过程、glm过程。
我就选glm过程,以下述数据作为例子简单写一下如何通过SAS来进行协方差分析。
例:
比较三种猪饲料A1,A2,A3对猪增重的影响,测得每头猪的增重(Y)和出生重(X),数据列在表4-3中。问三种饲料对猪增重是否有显著不同的效果?
表4-3 不同饲料对猪增重的影响
首先确定X为出生体重,组变量为class,反应变量为Y,建立回归模型,如下所示:
data tmp;
input x y @@;
class = scan("A1,A2,A3",ceil(_n_/8));
if class ='A1' then do;
k1 =0; k2 =1;
end;
else if class ='A2' then do;
k1 =1; k2 =0;
end;
else do;
k1 =0; k2 =0;
end;
cards;
16 8513 83 11 6512 76 12 80 16 91 14 84 17 90
17 9716 9018 10018 9521 10322 10619 9918 94
22 8924 9120 8323 9525 10027 10230 10532 110
;
run;
ods output ParameterEstimates = stat;
proc glm data = tmp;
model y = x k1 k2;
run;
ods output close;
得到结果如下所示:
模型的x的回归系数在0.05的水平上是明显不为0的,因此可以认为x与y存在线性关系,那么接下来就需要去掉这一因素不同水平差异而带来的变异了。
proc sql noprint;
create table tmp1 as
select a.*,mean(a.x) as mean_X,b.Estimate as beta, y - beta * (a.x - calculated mean_X) as y1 label = "调整后的Y"
from tmp a,stat b
where b.Parameter = 'x';
quit;
可以看到上述sql过程得到调整之后的y,剔除了不同水平差异的X之后,那么接下里就可以进行方差分析了,这里就不再赘述了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26