京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,迎接充满财富的未来
马云,说了一句话,让全世界的人都涌向了市场。“想要我的宝藏吗?如果想要的话,那就到数据上去找吧!我把我的未来全部都放在那里”,世界开始迎接“大数据时代”的来临。
什么是大数据呢?
顾名思义大数据便是数量巨大,类型众多,结构复杂的数据集合。数据具有较小的价值,而数据的集合因为数量的众多,量变引起的质变,所以其价值无可估量。
数据出现最早的时间可以追溯到18000年前,原始人类开始用数据简单计算一些食物的储存期,还有动物的迁徙。
而中国自古以来便是数据大国,比如臣子和皇上“刚”起来后一般会骂,“谓之殷商”意思是你TM和昏君商纣王有什么区别。如果换成数据就会是,根据历史数据表明你和商纣王的昏庸度相似百分之百!
来人!拉出去砍了!
恩恩,这就是中国数据的具体应用 ——
数据一般就是一种同过去发生过的事情与现在进行比较的过程,从而得出结论。
而从经济角度来说“历史只有工业革命前后之分。之所以如此说,是因为工业革命之前世界GDP并没有多少的变化,都在一个较低的水平,都处于“马尔赛斯模式”之中就是人口就那么多,战争抢地后生产面积变大,生育率变高,收入变高。但是由于土地就那么多,生产生活物资也就那么多,于是总是徘徊在一个同生产率平衡的人口上。
而工业革命之后西欧国家GDP出现了一个明显变化,从公元元年的450美元增长到1820年时的1204美元,英国作为工业革命的发源国也大致如此。而从1820年到2001年的180年里,世界人均GDP从原来的667美元增长到6049美元。从数据可见科学技术的发展对人类的影响是巨大的 !
而随着互联网云时代的来临,进行了整个世界数据的整合,于是产生了大数据时代。
而大数据的历史最早可以追溯到十八世纪八十年代,美国统计学家赫尔曼。霍尔瑞斯为了统计人口数据而发明一台电动器来读卡片上的洞数,让原本应该耗时8年的人口普查活动提前七年结束由此引发在全球数据处理的新纪元。 2008来年末计算机社区联盟发表了一份有影响力的白皮书《大数据计算;在商务,科学和社会 领域创建革命性突破》阐述了大数据对于市场的运用和未来前景。于是大数据宣告正式进入世界最具有价值和影响的行列!
那么说说大数据的现代吧!
2015年发生了很多大事,许多我都不记得了。只记得阿里巴巴的支付宝,和微信的交易系统打起来了。国家央行的数据表明,因支付每年产生的利润为十多亿。那么对于这么两家身价千亿的公司来说这十多亿为什么挣得如此凶厉呢?
其实他们为的不是那十几亿的收益,而是数据,用户达到消费数据!
QQ收集着你的生活交友数据
支付宝微信收集你的支付信息。
京东,淘宝收集着你的消费信息!
可以说生活中你用的所有APP,所有关于互联网应用都无时无刻的收集你所有的信息。数据便是将你的个人用收集的信息将你刻画的越来越清晰。 拿现在来说,我们每次逛淘宝的时候淘宝就会在你的主页面推荐一些东西。如果细心的人就会发现给你推荐的东西非常适合你。价格合适,而东西正好你想买的。这便是根据你以前阅览的页面店铺以及消费情况而具体推荐的。
也可以说成你每天的工作所做的事情都被一一记录下来,形成数据最后成为你得个人数据资料库!
而数据收集越详细便能将不同的人分为不同的群体,从而提供相应的服务。不光如此他还可以使你发现新的商业价值,最大的好处是以一种全新的思维放弃处理事情!
数据垄断
拥有大数据的公司,特别是可以实时获得大量各类用户数据的互联网公司,它们通过分析这些数据不断优化自己的系统,别的公司几乎已不可能撼动它们的地位,小公司虽然有时可以通过这些大公司提供的API调用一些数据,但关于用户行为统计的数据现在没有公司会无偿公布,这便成为一种对数据的垄断,在信息时代,对数据的垄断,也就是对信息的垄断,对资源的垄断。
比如阿里巴巴,腾讯都是数据垄断行业!
垄断是不可避免的,数据=财富的时代不远了!
数据垄断当然是不好的,但是现状无法改变这也是无能为力的,至少我是想不到什么办法!但是我相信某天数据将会公开。毕竟世界都是向着好的方面前进的嘛!
大数据的出现只会让这个世界越来越好,它将会提供更好的市场空间。虽然不可避免的会出现这样或者那样的问题,但是那次技术革命不出问题,蒸汽革命还影响环境呢!但是对人类的作用也是巨大的,数据也是一样!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11