京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,迎接充满财富的未来
马云,说了一句话,让全世界的人都涌向了市场。“想要我的宝藏吗?如果想要的话,那就到数据上去找吧!我把我的未来全部都放在那里”,世界开始迎接“大数据时代”的来临。
什么是大数据呢?
顾名思义大数据便是数量巨大,类型众多,结构复杂的数据集合。数据具有较小的价值,而数据的集合因为数量的众多,量变引起的质变,所以其价值无可估量。
数据出现最早的时间可以追溯到18000年前,原始人类开始用数据简单计算一些食物的储存期,还有动物的迁徙。
而中国自古以来便是数据大国,比如臣子和皇上“刚”起来后一般会骂,“谓之殷商”意思是你TM和昏君商纣王有什么区别。如果换成数据就会是,根据历史数据表明你和商纣王的昏庸度相似百分之百!
来人!拉出去砍了!
恩恩,这就是中国数据的具体应用 ——
数据一般就是一种同过去发生过的事情与现在进行比较的过程,从而得出结论。
而从经济角度来说“历史只有工业革命前后之分。之所以如此说,是因为工业革命之前世界GDP并没有多少的变化,都在一个较低的水平,都处于“马尔赛斯模式”之中就是人口就那么多,战争抢地后生产面积变大,生育率变高,收入变高。但是由于土地就那么多,生产生活物资也就那么多,于是总是徘徊在一个同生产率平衡的人口上。
而工业革命之后西欧国家GDP出现了一个明显变化,从公元元年的450美元增长到1820年时的1204美元,英国作为工业革命的发源国也大致如此。而从1820年到2001年的180年里,世界人均GDP从原来的667美元增长到6049美元。从数据可见科学技术的发展对人类的影响是巨大的 !
而随着互联网云时代的来临,进行了整个世界数据的整合,于是产生了大数据时代。
而大数据的历史最早可以追溯到十八世纪八十年代,美国统计学家赫尔曼。霍尔瑞斯为了统计人口数据而发明一台电动器来读卡片上的洞数,让原本应该耗时8年的人口普查活动提前七年结束由此引发在全球数据处理的新纪元。 2008来年末计算机社区联盟发表了一份有影响力的白皮书《大数据计算;在商务,科学和社会 领域创建革命性突破》阐述了大数据对于市场的运用和未来前景。于是大数据宣告正式进入世界最具有价值和影响的行列!
那么说说大数据的现代吧!
2015年发生了很多大事,许多我都不记得了。只记得阿里巴巴的支付宝,和微信的交易系统打起来了。国家央行的数据表明,因支付每年产生的利润为十多亿。那么对于这么两家身价千亿的公司来说这十多亿为什么挣得如此凶厉呢?
其实他们为的不是那十几亿的收益,而是数据,用户达到消费数据!
QQ收集着你的生活交友数据
支付宝微信收集你的支付信息。
京东,淘宝收集着你的消费信息!
可以说生活中你用的所有APP,所有关于互联网应用都无时无刻的收集你所有的信息。数据便是将你的个人用收集的信息将你刻画的越来越清晰。 拿现在来说,我们每次逛淘宝的时候淘宝就会在你的主页面推荐一些东西。如果细心的人就会发现给你推荐的东西非常适合你。价格合适,而东西正好你想买的。这便是根据你以前阅览的页面店铺以及消费情况而具体推荐的。
也可以说成你每天的工作所做的事情都被一一记录下来,形成数据最后成为你得个人数据资料库!
而数据收集越详细便能将不同的人分为不同的群体,从而提供相应的服务。不光如此他还可以使你发现新的商业价值,最大的好处是以一种全新的思维放弃处理事情!
数据垄断
拥有大数据的公司,特别是可以实时获得大量各类用户数据的互联网公司,它们通过分析这些数据不断优化自己的系统,别的公司几乎已不可能撼动它们的地位,小公司虽然有时可以通过这些大公司提供的API调用一些数据,但关于用户行为统计的数据现在没有公司会无偿公布,这便成为一种对数据的垄断,在信息时代,对数据的垄断,也就是对信息的垄断,对资源的垄断。
比如阿里巴巴,腾讯都是数据垄断行业!
垄断是不可避免的,数据=财富的时代不远了!
数据垄断当然是不好的,但是现状无法改变这也是无能为力的,至少我是想不到什么办法!但是我相信某天数据将会公开。毕竟世界都是向着好的方面前进的嘛!
大数据的出现只会让这个世界越来越好,它将会提供更好的市场空间。虽然不可避免的会出现这样或者那样的问题,但是那次技术革命不出问题,蒸汽革命还影响环境呢!但是对人类的作用也是巨大的,数据也是一样!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29