京公网安备 11010802034615号
经营许可证编号:京B2-20210330
有些人做架构决策的时候纯粹是基于谁的声音大:
@xeraa @lukaseder 不,我们最重要的架构决策是基于 #tweets. 这是一个面向Twitter的体系结构。
— 加里斯 维斯特恩 (@gareth) 2016年9月21日
然而对其他大多数人而言,决策并不是这么简单。例如:什么时候我们应该启用NoSQL存储系统来代替关系型数据库管理系统(RDBMS)?
关系型数据库(RDBMS)能够适应所有情况
这个问题很明显,假设你开始就使用关系型数据库(RDBMS),这种传统的数据库系统能够解决任何问题且不容易被取代。这意味着什么?简单的举例:
关系型数据库(RDBMS)一直被使用,所以他们和”新来者“相比在市场上有巨大的优势, “新来者”缺少优秀的工具,如社区、支持也不够成熟。
埃德加·弗兰克·科德的工作对我们整个行业产生的最大影响可能就是,自那以后,几乎没有像关系模型那样具有革命性的东西了。对一个替代型数据库来说,它很难被普遍使用。意即它们通常被用来解决小问题。
有人会这么说,有时候你确实碰到一个小问题。 例如, 一个图形数据库的问题。然而事实上,图表和你在关系模型中所标识的东西没有什么根本性的不同。它很容易用多到多的关系表来模拟一个图。
这些同样使用于数据库中的XML/JSON(别忘记, JSON就是XML,但比XML少一些语法和属性,所以它更棒)。有时候,您需要在数据库中的层次结构中存储文档的结构(层次结构数据)而不是规范他们。当然你也可以先规范文档,但可能会做很大的无用功。
大多数现代关系型数据库提供XML/JSON数据结构来存储(以及更重要的查询)数据,包括PostgreSQL、Oracle、DB2、SQL Server等。
那么,我们什么时候决定切换?
作为开发人员,我们倾向于能够快速的切换。例如,当我们处理图形时,我们喜欢用Neo4j, 因为它具有不起的数字查询语言。 当我们使用JSON时,我们喜欢用Couchbase, 因为它实现了有趣的N1QL查询语言。这两种语言都深受SQL查询语言影响,在我看来我们的供应商会给我们提供明智的选择(不会像MongoDB基于JSON查询语言),终究原因,SQL语言乃是由最强大和最流行的4GL 曾经创造的。
但是作为开发人员,我们不应该轻率的做出决定。 首先,虽然这些专业的数据库看起来像是更好的选择,但是运营团队需要增加额外的维护成本、监控、补丁以及生产系统的额外调整。这在关系型数据库中真实的存在,最近的一个突出的例子是Uber从PostgreSQL 切换回MySQL:
然而唯一令人遗憾的是他们切换方式和以前相反,这点请注意。事实上你的团队总是喜欢使用相同的数据库有很多的原因,即使是这些数据库团队开发许可很贵,在很多案例里更贵:
从事额外的许可和/或合同需要新数据库供应商提供技术支持.
为了新技术寻找技能熟练的数据库管理员(DBA)(能够胜任新数据库).
维护两个数据仓库,并能维持数据同步的成本。
最终,有一个临界值:
@gareth @xeraa 一般情况下,都有一个临界值,没到临界点,可以坚持使用关系型数据库(RDBMS),在某种程度上就要开始考虑同时使用两种数据库或者完全迁移到另一个上。
— 卢卡斯埃德尔 (@lukaseder) 2016年9月21日
在数据库中使用JSON,这很简单:
偶尔使用JSON存储:坚持使用关系型数据库(RDBMS)。
一切以JSON为主:可以考虑不用关系型数据库(RDBMS)。
这个同样适用于图形问题。SQL完全能够处理图形和递归遍历。递归的计算子集之和,这是一个时髦的声明:
如果你只有一点树形/图形遍历需要计算(例如,一个简单的菜单结构),就无需涉及关系型数据库。如果图形存储是您的主要业务,那么关系型数据库可能不是一个好的选择。
结论
无论你要解决什么问题,请记住:如果你有一把锤子,而每一个问题开始的时候都可以当作钉子。但不要把关系型数据库当作是把愚蠢的锤子。不要小看它,在2016年它在处理非关系型小众的事情上做的非常的好。
关系型数据库仍然是处理各种数据问题的最好的选择。 只有当你存储超过一定阀值(或者你可以预见到要这么做),那是你应该去寻找替代品来替代它。因为当你去寻找一个新的(JSON,图形等)来改变的时候,要浪费你很多的时间回到你“正常”的关系业务里去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26