京公网安备 11010802034615号
经营许可证编号:京B2-20210330
香港企业采用大数据技术仍在起步,要考虑的事的确很多,但笔者认为厂商经常说得过于复杂,令企业设计大数据架构时存有疑问,例如在建构时选何制定方案使用方法及规模,相信是很多决策人希望了解的事,那么我们尝试化繁为简,由浅入深了解部署时的考虑点。
在我们考虑大数据时,注意力放在「大」这个字,但是在建设基础架构时,我们还应该注意「分散式」的数据处理。事实上,大数据软件需要处理大量资讯,而且在将资料复制到多个位置时,数据的容量便会倍增。但是,大数据的最重要属性并不在于它的规模,而在于它将大作业分割成许多小作业的能力,它能够将一个任务的资源分散到多个位置变为同时处理。在将大规模和分散式架构组合在一起时,我们就能发现大数据网络有一组特殊的需求,下面是需要考虑的六个要素:
1.不容有失 提升网络弹性
如果有一组分散式资源必须通过互联网进行协调时,可用性就变得非常重要。万一网络出现故障,便会出现不连续的计算资源与资料库崩坏。说白一点,大多数网络工程师的主要关注点是正常执行时间,但是,网络故障的原因又各不相同,包括设备故障(硬体与软体)、维护和人为错误。我们都知道伺服器故障是避无可避,网络的可用性也很重要,所谓完美的设计其实是不存在。
网络架构师应该设计一些能适应故障的弹性网络,网络的弹性取决于路径多样性(资源之间设置多条路径)和容错移转(能够快速发现问题和转移到其他路径上)。除了传统的平均故障时间间隔(MTBF)方法,大数据网络的设计标准一定要包括这些架构。
2. 解决网络拥塞
大数据应用程式不仅仅是规模大,而且还有突发性的流量「洪峰」。当一个程序启动后,数据就开始流转,在高流量时段时拥塞造成的问题可以很严重,例如可能引起更多的Queues增加延迟和packet lost。网络拥塞还可能令请求多次发出,这可能让本身负载繁重的网络无法承受。因此,网络架构设计时应该尽可能减少拥塞点,要网络具有较高的路径多样性,这样才能容许网络流量分流到大量不同的路径上。
3. 性能一致要比迟延性更重要
实际上,大多数大数据应用程式对网络延迟并不敏感。如果运算时间以秒计或以分钟计的话,即使出现较大延迟也是可以接受,例如为几千ms。然而,大数据应用程式一般具有较高的同步性。这意味着作业是并存执行的,而各个作业之间较大的性能差异可能会引发应用程式故障。除第1至2点提到网络的高效性,空间和时间上也要具有一致的性能。
4. 预留未来的扩展性
大多数大数据丛集实际上并不大,根据Hadoop Wizard的资料,2013年大数据丛集的平均节点数量只有100个。换句话说,即使每一台伺服器配置双重redundancy,支援整个丛集也只需要4个接入switch (假设是分别有72个10GbE网络接口的Switch)。
扩展性并不在于现在丛集现在有多大规模,而是在乎如何平衡地扩展支援未来的部署规模。如果基础架构设计现在只适合小规模部署,那么整个架构将如何随着节点数量的增加而不断进化?未来何时需要完全重新设计?这个架构是否需要一些近程资料和资料位置资讯?关键是扩展性并不在于绝对规模,而是更关注于实现足够规模解决方案的路径。
5. 网络分割 关键任务先行
网络分割是大数据应用环境的重要条件,形式上,要将大数据的流量与其他网络流量区分开来,这样应用程式产生的突发流量才不会影响其他关键任务网络负载。除此之外,运行多个作业的多个用户,以满足性能、合规性和审计的要求。这些工作要求在一些场合中实现网络负载的逻辑分离,某些场合还要作物理分离。
6. 应用感知力
虽然大数据的概念与Hadoop部署关系密切,但是它已经成为丛集环境的代名词。根据不同应用程式的特点,环境的需求随之不同。有一些可能对频宽要求高,一些则可能对延迟很敏感。总之,一个网络要支援多应用程式和多用户,它就必须要能够区分自己的工作负载,并且要能够正确处理各个工作负载,不仅仅是提供足够的频宽。
最后,应用程式体验取决于很多因素,包括网络拥塞和分割。创建一个满足所有这些需求的网络需要具备前瞻性,不仅要考虑基础架构能够支援的伸缩规模,还要考虑不同类型的应用程式如何共存于同一环境中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15