
香港企业采用大数据技术仍在起步,要考虑的事的确很多,但笔者认为厂商经常说得过于复杂,令企业设计大数据架构时存有疑问,例如在建构时选何制定方案使用方法及规模,相信是很多决策人希望了解的事,那么我们尝试化繁为简,由浅入深了解部署时的考虑点。
在我们考虑大数据时,注意力放在「大」这个字,但是在建设基础架构时,我们还应该注意「分散式」的数据处理。事实上,大数据软件需要处理大量资讯,而且在将资料复制到多个位置时,数据的容量便会倍增。但是,大数据的最重要属性并不在于它的规模,而在于它将大作业分割成许多小作业的能力,它能够将一个任务的资源分散到多个位置变为同时处理。在将大规模和分散式架构组合在一起时,我们就能发现大数据网络有一组特殊的需求,下面是需要考虑的六个要素:
1.不容有失 提升网络弹性
如果有一组分散式资源必须通过互联网进行协调时,可用性就变得非常重要。万一网络出现故障,便会出现不连续的计算资源与资料库崩坏。说白一点,大多数网络工程师的主要关注点是正常执行时间,但是,网络故障的原因又各不相同,包括设备故障(硬体与软体)、维护和人为错误。我们都知道伺服器故障是避无可避,网络的可用性也很重要,所谓完美的设计其实是不存在。
网络架构师应该设计一些能适应故障的弹性网络,网络的弹性取决于路径多样性(资源之间设置多条路径)和容错移转(能够快速发现问题和转移到其他路径上)。除了传统的平均故障时间间隔(MTBF)方法,大数据网络的设计标准一定要包括这些架构。
2. 解决网络拥塞
大数据应用程式不仅仅是规模大,而且还有突发性的流量「洪峰」。当一个程序启动后,数据就开始流转,在高流量时段时拥塞造成的问题可以很严重,例如可能引起更多的Queues增加延迟和packet lost。网络拥塞还可能令请求多次发出,这可能让本身负载繁重的网络无法承受。因此,网络架构设计时应该尽可能减少拥塞点,要网络具有较高的路径多样性,这样才能容许网络流量分流到大量不同的路径上。
3. 性能一致要比迟延性更重要
实际上,大多数大数据应用程式对网络延迟并不敏感。如果运算时间以秒计或以分钟计的话,即使出现较大延迟也是可以接受,例如为几千ms。然而,大数据应用程式一般具有较高的同步性。这意味着作业是并存执行的,而各个作业之间较大的性能差异可能会引发应用程式故障。除第1至2点提到网络的高效性,空间和时间上也要具有一致的性能。
4. 预留未来的扩展性
大多数大数据丛集实际上并不大,根据Hadoop Wizard的资料,2013年大数据丛集的平均节点数量只有100个。换句话说,即使每一台伺服器配置双重redundancy,支援整个丛集也只需要4个接入switch (假设是分别有72个10GbE网络接口的Switch)。
扩展性并不在于现在丛集现在有多大规模,而是在乎如何平衡地扩展支援未来的部署规模。如果基础架构设计现在只适合小规模部署,那么整个架构将如何随着节点数量的增加而不断进化?未来何时需要完全重新设计?这个架构是否需要一些近程资料和资料位置资讯?关键是扩展性并不在于绝对规模,而是更关注于实现足够规模解决方案的路径。
5. 网络分割 关键任务先行
网络分割是大数据应用环境的重要条件,形式上,要将大数据的流量与其他网络流量区分开来,这样应用程式产生的突发流量才不会影响其他关键任务网络负载。除此之外,运行多个作业的多个用户,以满足性能、合规性和审计的要求。这些工作要求在一些场合中实现网络负载的逻辑分离,某些场合还要作物理分离。
6. 应用感知力
虽然大数据的概念与Hadoop部署关系密切,但是它已经成为丛集环境的代名词。根据不同应用程式的特点,环境的需求随之不同。有一些可能对频宽要求高,一些则可能对延迟很敏感。总之,一个网络要支援多应用程式和多用户,它就必须要能够区分自己的工作负载,并且要能够正确处理各个工作负载,不仅仅是提供足够的频宽。
最后,应用程式体验取决于很多因素,包括网络拥塞和分割。创建一个满足所有这些需求的网络需要具备前瞻性,不仅要考虑基础架构能够支援的伸缩规模,还要考虑不同类型的应用程式如何共存于同一环境中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30