
从大数据到信用数据信息共享
近年来,中国保险业积极顺应新形势、加快运用新技术、大胆探索新模式,互联网保险已经走上迅猛发展的快车道。整个“十二五”期间,互联网保费规模从2011年的32亿元飙升至2015年的2234亿元,增长约69倍,在保险业总保费中的比重从0.2%攀升至9.2%。与此同时,专业互联网保险公司试点不断增多。互联网保险已经成为中国保险业转型发展不可替代的重要驱动力。
尤其值得关注的是,诸多行业已经将大数据的创新应用上升为战略高度,作为大数据的使用者和生产者,保险业也不例外,互联网保险更是如此。大数据除了在完善客户行为分析、推动产品创新和精准定价、提升保险服务价值、创新保险营销模式外,还能够在一定程度上解决信息不对称造成的问题,提高保险公司的风控和反欺诈能力。未来保险行业最核心的竞争力将由大数据构成,保险业的产品设计、定价、营销策略、客户服务、风险控制和反欺诈等都会发生深刻变化,数据是保险业存在和发展的基石。
中国保险行业协会日前发布的《2016中国互联网保险行业发展报告》指出,传统保险主要基于保险公司精算能力以及客户数据进行保险产品开发和运营分析,而新兴技术比如区块链、人工智能、物联网、基因诊疗等,能够极大改变传统保险公司的成本结构,进而在为客户提供服务方面具有某种明显的优势,比如价格、服务质量、体验等方面,这种成本优势可以直接转化为保险公司的竞争优势。
风控方面。首先,保险公司可利用大数据收集由移动互联网及移动智能设备技术终端得到的关于被保险对象的综合信息,从而更好地把握客户所转嫁风险,进行有效的风险控制;其次,保险公司通过大数据技术将业务数据、管理数据、社会数据等各种数据整合分析后,提升内部管理能力,并且增强公司的风险防范能力。
反欺诈方面。保险公司通过外部数据实时获得客户以往的购买信息、理赔信息,确认客户是否购买超额保险,或重复保险,拒绝可能出现欺诈行为的客户;保险公司还可通过外部数据实时获得客户的出险信息,如客户在高速公路上驾车发生事故后向交警报案,保险公司就能够及时获得报案信息,或者从第三方直接获取客户的医疗、汽车维修等数据,防止保险欺诈的出现。
总之,大数据有助于保险公司更直接、更准确地了解市场、客户,精准定价和开发适宜的保险产品,提升客户的体验,加强内部管理等。其最终的结果是通过大数据的应用来扩大保险公司的盈利空间,而且促进优质客户群体的持续增长,从而形成良性循环。更值得一提的是,大数据的应用将加速互联网保险渠道向“业态”转化,即从保险产品的开发、保险信息咨询、保险计划书设计、销售到理赔等后期服务所有环节都依托互联网来完成,改变目前互联网更多是作为单纯的保险销售渠道的状况,实现互联网保险从“保险互联网化”的简单销售模式向真正的互联网保险“业态”的发展。
但是,尽管各家保险公司都掌握着庞大的数据,但目前保险公司的很多数据是相互独立的,对外也基本独立。即便有交互,也仅局限于小范围,这极不利于保险公司业务和反欺诈工作的开展。而数据信息共享可以使更多的机构更充分地使用已有数据资源,减少资料收集、数据采集等重复劳动和相应费用,而把精力重点放在开发新的应用程序及系统集成上。
中国互联网金融协会本着“服务会员、服务行业”的宗旨,努力推动互联网金融行业信用建设工作。协会作为独立第三方牵头搭建了互联网金融服务平台。打通不同机构间的“信息孤岛”,将信用数据有效的整合起来,作为传统征信的补充,依法合规的提供公正公平的互联网金融征信服务,实现信用信息充分运用。目前自平台正式开通仅一个月内,已收集信用数据近千万条。
据了解,协会下一步将积极推动“部门联动,社会协同”,建立完善“守信联合激励和失信联合惩戒制度”。会加大与最高人民法院以及各社会征信服务机构的合作,进一步扩大共享信息的覆盖面和应用范围,充分发挥共享平台的网络优势和规模效应。进而建立跨地区、跨部门、跨领域的联合激励与惩戒机制,真正做到让守信者受益、失信者受限,共同营造诚实守信的社会氛围,支持和帮助互联网金融企业降低风险成本,收获最大效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29