
大数据应用在目前已经得到了部分推广,其在IT、金融、交通、制造等多个方面已经开始提现价值。大数据应用的整体范围是从服务业开始,向第二、第一产业推广的,今后其在工农业领域也将发挥不亚于第三产业中的价值。
大数据应用的第三产业价值
大数据应用在理论上是可以让所有产业都从中获益的。而根据1985年我国统计局的产业划分来看,农、林、渔、牧被定为第一产业;工业和建筑业被定为第二产业;其他均为第三产业。而由于数据缺乏及从业人员等原因,第一、二产业的发展速度相对第三产业会有所迟缓。
第三产业一般被认为是服务业,其一般可分为流通部门和服务部门两种。而第三产业中汇聚了大量的数据以及大批科研中坚,因此大数据行业在第三产业中最先开展,效果也最为突出。
医疗健康方面,一些贴身设备可以收集用户的健康数据,从而建立一个专属的健康档案,通过运动、呼吸、心率、睡眠等多个角度来确定用户的需求,通过大数据分析为用户建立专属的解决方案。也可以在医院等场所收集患者信息,进行疫情的预测。
第三产业的数据产生量和处理能力都更高
交通方面,通过车辆位置、时间等信息确定路况,为驾驶员提供最快捷的路径选择, 避免堵车。在普通用户方面,利用手机收集地理位置等数据,结合地铁、公交等多种手段帮助用户找到最佳出行方式,同时利用这些数据进行数据库的更新,保障数据的完整无误。
金融方面, 利用机器学习及大数据对每一个信贷申请人进行全方位分析,对借款人过去的信用资料与数据库中的全体借款人的信用习惯相比较,检查借款人的发展趋势跟经常违约、随意透支的用户进行比较,减少欺诈损失、管理信贷风险以及不良信贷的问题。
电信方面,通过集成数据对客户流失的原因进行综合分,利用分析结果对于网络布局进行优化,为用户提供更好的服务;同时,对用户行为进行分析,及时推出符合用户兴趣的业务解决潜在流失用户问题。企业方面,发挥自身优势帮助企业收集、管理和评估大数据集,然后以可视化的方式将这些数据呈现给企业,帮助企业改进决策。
大数据应用的第二产业价值
大数据应用在第二产业之中与物联网有着密不可分的联系。物联网的发展,需要以RFID、工业大数据、传感器及其网络的应用为切入点,最终实现经济效益提升、安全生产和节能减排的目的。
钢筋水泥的大数据驱动
大数据一般具有种类多、数量大和实时性高的特点,而工业中的数据尽管多,可是普遍是以数据表格以及纸质数据为主的,这种数据管理方式存在诸多问题,也不利于数据分析。而随着工业化和信息化的结合,工业大数据得到了发展,但是数据依然是以非结构化数据为主。而大数据的发展并没有让工业数据采集变得容易,因此工业方面急需工业互联网的建设。
此外,工业数据如压力、温度等数据需要在语境中才能得到理解。如燃气轮机排气装置上的温度读数与机车的内部温度是完全不同,而如果采用传统方式分析可能需要的时间需要接近一个月,而在工业大数据应用后,这一周期得到了大幅缩短。
大数据应用的第一产业价值
在第一产业方面,种植业等一般需要大量经验的积累才能准确的掌握最大收益率。而借助大数据的力量则可以解决这一传统问题。
利用数据采集和数据分析,进行大量的采集点获取天气数据,结合天气模拟、土质分析、作物分析等做出综合判断,向农民推荐相关农作物进行种植,从而获得最大化收益。此外,可以在农田中布置传感器收集农田数据,将数据上传并进行分析后确定施肥、杀虫、灌溉以及防灾等时间,保障农作物的正常发展。
大数据种地是一种潮流趋势
渔业中可以利用探测器进行水质监测,分析确定含氧量等确定水质健康程度,帮助渔民及时了解养殖情况。林业和牧业也可以利用类似的方式获得相关帮助。
从第三产业的应用到第一、二产业推广,大数据应用的范围在不断推广。在未来,大数据还可能会向更多的领域拓展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29