
序贯模型=关联规则+时间因素。
今天下午基本上把通过arulesSequences来进行序列模式挖掘搞明白了,晚上又把arulesSequences中最重要的函数cspade查看了一下。Mark一下。
还是先简单写一个模式挖掘的例子。
1、数据准备
假设数据存放在E盘下的test.txt,而且E盘中的数据为:
1 10 2 C D A F H E
1 15 3 A B C E A F
1 20 3 A B F D C F
1 25 4 A C D F D D
2 15 3 A B F
2 20 1 E
3 10 3 B F
4 10 3 D G H
4 20 2 B F
4 25 3 A G H F
4 30 12 A H H H A F F F A G G G
数据比zaki稍微复杂一些,不过只是多添加了一些个别内容。
2、建模
[html] view plain copy
print?
>x=read_baskets(con="E:/zaki.txt",info=c("sequenceID","eventID","SIZE"))
>s1 <- cspade(x, parameter = list(support = 0.6,maxlen=3), control = list(verbose = TRUE))
>as(s1,"data.frame")
主要就这么三步,就完成了序列模式挖掘。现在需要看一下核心的函数cspade()。
3、cspade函数解释
根据文档,cspade函数结构如下:
[html] view plain copy
print?
cspade(data, parameter = NULL, control = NULL, tmpdir = tempdir())
其实,参数data没啥可说的,就导入transactions类型的数据就可以了。
parameter是设定各种参数,这个还需要认真了解一下。
parameter中,可选的参数有如下几个:
support:0-1之间的一个数值,代表得到的高频序列的最小支持度。
支持度其实是这样计算的:看上面的data中有4个序列,比如我们要计算{A}的支持度,则直接看{A}在4个序列中出现过几次,用次数再除以4就得到了支持度。至于一次订单中出现多少次A,则对序列挖掘是没啥影响的。
maxsize:一个整数值,代表在寻找高频序列的过程中,任意一个序列里面的每一个元素的最多能有几个项。
举个例子, <{D,H},{B,F},{A}> 是我们通过序列挖掘得到的一个序列s,那么序列s包含3个元素element,其中第一个元素又包含2个项item。通过设定maxsize,可以在序列挖掘中设定1对1或多对1的不同挖掘方式。
maxlen:一个整数值,代表挖掘的序列最大可以是多长,也即一个序列最多可以有几个元素。
比如,如果s1 <- cspade(x, parameter = list(support = 0.6,maxlen=2), control = list(verbose = TRUE)) ,那么最终得到的序列可能为: <{D,H},{B}><{A,F,H},{A,F}>
因此,通过maxlen参数可以去挖掘较短的序列。
mingap:一个整数值,确定两个连续的订单之间的最小时间差值,默认为none。
maxgap:一个整数值,确定两个连续的订单之间的最大时间差值,默认为none。
maxwin:一个整数值,确定一个序列中任意两个订单之间的最大时间差值,默认为none。
control其实是对内存了什么的控制,一般用不到,第四个也是用不到。因此,cspade函数主要就parameter的设定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02