京公网安备 11010802034615号
经营许可证编号:京B2-20210330
序贯模型=关联规则+时间因素。
今天下午基本上把通过arulesSequences来进行序列模式挖掘搞明白了,晚上又把arulesSequences中最重要的函数cspade查看了一下。Mark一下。
还是先简单写一个模式挖掘的例子。
1、数据准备
假设数据存放在E盘下的test.txt,而且E盘中的数据为:
1 10 2 C D A F H E
1 15 3 A B C E A F
1 20 3 A B F D C F
1 25 4 A C D F D D
2 15 3 A B F
2 20 1 E
3 10 3 B F
4 10 3 D G H
4 20 2 B F
4 25 3 A G H F
4 30 12 A H H H A F F F A G G G
数据比zaki稍微复杂一些,不过只是多添加了一些个别内容。
2、建模
[html] view plain copy
print?
>x=read_baskets(con="E:/zaki.txt",info=c("sequenceID","eventID","SIZE"))
>s1 <- cspade(x, parameter = list(support = 0.6,maxlen=3), control = list(verbose = TRUE))
>as(s1,"data.frame")
主要就这么三步,就完成了序列模式挖掘。现在需要看一下核心的函数cspade()。
3、cspade函数解释
根据文档,cspade函数结构如下:
[html] view plain copy
print?
cspade(data, parameter = NULL, control = NULL, tmpdir = tempdir())
其实,参数data没啥可说的,就导入transactions类型的数据就可以了。
parameter是设定各种参数,这个还需要认真了解一下。
parameter中,可选的参数有如下几个:
support:0-1之间的一个数值,代表得到的高频序列的最小支持度。
支持度其实是这样计算的:看上面的data中有4个序列,比如我们要计算{A}的支持度,则直接看{A}在4个序列中出现过几次,用次数再除以4就得到了支持度。至于一次订单中出现多少次A,则对序列挖掘是没啥影响的。
maxsize:一个整数值,代表在寻找高频序列的过程中,任意一个序列里面的每一个元素的最多能有几个项。
举个例子, <{D,H},{B,F},{A}> 是我们通过序列挖掘得到的一个序列s,那么序列s包含3个元素element,其中第一个元素又包含2个项item。通过设定maxsize,可以在序列挖掘中设定1对1或多对1的不同挖掘方式。
maxlen:一个整数值,代表挖掘的序列最大可以是多长,也即一个序列最多可以有几个元素。
比如,如果s1 <- cspade(x, parameter = list(support = 0.6,maxlen=2), control = list(verbose = TRUE)) ,那么最终得到的序列可能为: <{D,H},{B}><{A,F,H},{A,F}>
因此,通过maxlen参数可以去挖掘较短的序列。
mingap:一个整数值,确定两个连续的订单之间的最小时间差值,默认为none。
maxgap:一个整数值,确定两个连续的订单之间的最大时间差值,默认为none。
maxwin:一个整数值,确定一个序列中任意两个订单之间的最大时间差值,默认为none。
control其实是对内存了什么的控制,一般用不到,第四个也是用不到。因此,cspade函数主要就parameter的设定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16