
大数据服务存四疑
大数据时代的到来并不是很突然,但是却让人措手不及。不少企业完全没有做好准备,就已经进入了一个所谓的“数据操控一切”的时期。他们有过恐慌、畏惧,甚至在一些企业的宣传中认为没有跟上大数据的脚步,结果就只有淘汰。可事实真的如此吗?笔者认为,大数据服务,至少有四点还值得怀疑。
数据采集
所谓大数据时代,数据采集是第一步,也是最关键的一步。大数据的采集是利用了多个数据库来接受来自客户端、App、Web以及传感器的数据而获得的。可是这些数据真的可靠吗?
诚然,在互联网企业中,客户终端和网页的数据十分重要。这些数据在确实可以通过数据库来准确获得,但是大数据的特点就是大。一旦遇到客户峰值,如双十一或者春运等,数据采集并发数极高,用户操作和访问同时进行,这就需要大量的数据库才有可能支撑,那么这些资源从何而来?数据库之间的负载均衡如何实现?
其次,数据采集的难题在其他行业中会变的更难。物联网落地至今尚未获得大规模成功,所谓的工业4.0目前依然只是我们想象出来的乌托邦,数据如何采集?采集到的数据如何确保正确性?
再者,涉及到人的服务行业中,数据往往与隐私并存。用户的数据是在变动的, 大数据分析所需的数据却是越多越准的。要确认用户的数据正确性,提高数据分析正确性,则很容易事实上形成对人隐私的侵犯,大数据会不会成为作恶的表现?
数据保值
数据采集的困境和难题可以突破,也确实有一部分公司成功突破。但是,数据采集后的保值问题却成为了更大的难关。
大数据公司偏爱这样宣传“数据是企业最大的财富”,可是企业却很少有能成功使用的。所以现在的企业普遍多了一个爱好——囤数据。那么,数据存储的成本从何而来?随着360个人云盘的倒下,数据存储的成本之高已经超出了很多人的想象,这笔投资真的物有所值?
更可怕的是,由于社会和环境的改变,普遍来讲数据的保质期只有3个月。当数据超过3个月后,其有价值的部分将只剩下10%。也就是说,费劲千辛万苦所采集到的数据将有90%会被淘汰,那么这部分数据要如何甄别?过期的数据真实性要如何判断?数据本身出了问题,分析又如何谈正确性?
数据处理
大数据的大,在于非结构化数据占用空间较多。可是,非结构数据主导时代是无可争议的事实。非结构化数据的价值能为企业所用的有多少呢?企业又能用的了多少呢?
在互联网企业数据库中往往能够得到结构化数据,这部分数据占用空间较小,分析容易,价值较高,因此也得到了用户的青睐。但是,结构化数据存在着其最大的弱点,不易转化。结构化数据的这一特点反而成了一种限制,在未来的发展中很可能会不如非结构化数据。
非结构化数据在大多数行业中都是主流存在,但是其处理难度要比结构化数据高太多。非结构化数据在处理的过程中,分类、检索、处理等方法多种多样,而且,包含信息量巨大,不同方式处理的结果很可能存在较大差异,因此价值虽高,但正确性都可能存疑,那么其产生的价值究竟能有多大呢?
数据应用
大数据经过多层包装处理最终可以得出很多结果,但是数据结果的应用却是个值得商榷的存在。
一般来讲,大数据分析的结果经过可视化等处理之后可以有一个比较直观的呈现。可是,数据的使用却往往是企业高层决策者的专利。而占据了公司绝对主体的企业员工却很少能够直接获取大数据创造的价值。而如果开放数据给全体企业员工,那么数据安全该如何保障呢?
而从成本角度来看,企业百尺竿头更进一步诚然可贵,可是如果大数据分析结果只是一种企业决策者的灵光一现,那么这笔投资真的能比高层培训更有价值吗?对于中小型企业来讲,大数据投资的意义又在哪里呢?所谓的知己知彼又是否真的能让企业百战百胜呢?
结束语
中国在大数据方面的发展形势十分乐观,但是对于企业来讲,每一笔投资都应当让他有所价值。数据的价值呈现可以有很多种,那么大数据是否真的像部分厂商所宣传的那样“数据操控一切”呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23