京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据服务存四疑
大数据时代的到来并不是很突然,但是却让人措手不及。不少企业完全没有做好准备,就已经进入了一个所谓的“数据操控一切”的时期。他们有过恐慌、畏惧,甚至在一些企业的宣传中认为没有跟上大数据的脚步,结果就只有淘汰。可事实真的如此吗?笔者认为,大数据服务,至少有四点还值得怀疑。
数据采集
所谓大数据时代,数据采集是第一步,也是最关键的一步。大数据的采集是利用了多个数据库来接受来自客户端、App、Web以及传感器的数据而获得的。可是这些数据真的可靠吗?
诚然,在互联网企业中,客户终端和网页的数据十分重要。这些数据在确实可以通过数据库来准确获得,但是大数据的特点就是大。一旦遇到客户峰值,如双十一或者春运等,数据采集并发数极高,用户操作和访问同时进行,这就需要大量的数据库才有可能支撑,那么这些资源从何而来?数据库之间的负载均衡如何实现?
其次,数据采集的难题在其他行业中会变的更难。物联网落地至今尚未获得大规模成功,所谓的工业4.0目前依然只是我们想象出来的乌托邦,数据如何采集?采集到的数据如何确保正确性?
再者,涉及到人的服务行业中,数据往往与隐私并存。用户的数据是在变动的, 大数据分析所需的数据却是越多越准的。要确认用户的数据正确性,提高数据分析正确性,则很容易事实上形成对人隐私的侵犯,大数据会不会成为作恶的表现?
数据保值
数据采集的困境和难题可以突破,也确实有一部分公司成功突破。但是,数据采集后的保值问题却成为了更大的难关。
大数据公司偏爱这样宣传“数据是企业最大的财富”,可是企业却很少有能成功使用的。所以现在的企业普遍多了一个爱好——囤数据。那么,数据存储的成本从何而来?随着360个人云盘的倒下,数据存储的成本之高已经超出了很多人的想象,这笔投资真的物有所值?
更可怕的是,由于社会和环境的改变,普遍来讲数据的保质期只有3个月。当数据超过3个月后,其有价值的部分将只剩下10%。也就是说,费劲千辛万苦所采集到的数据将有90%会被淘汰,那么这部分数据要如何甄别?过期的数据真实性要如何判断?数据本身出了问题,分析又如何谈正确性?
数据处理
大数据的大,在于非结构化数据占用空间较多。可是,非结构数据主导时代是无可争议的事实。非结构化数据的价值能为企业所用的有多少呢?企业又能用的了多少呢?
在互联网企业数据库中往往能够得到结构化数据,这部分数据占用空间较小,分析容易,价值较高,因此也得到了用户的青睐。但是,结构化数据存在着其最大的弱点,不易转化。结构化数据的这一特点反而成了一种限制,在未来的发展中很可能会不如非结构化数据。
非结构化数据在大多数行业中都是主流存在,但是其处理难度要比结构化数据高太多。非结构化数据在处理的过程中,分类、检索、处理等方法多种多样,而且,包含信息量巨大,不同方式处理的结果很可能存在较大差异,因此价值虽高,但正确性都可能存疑,那么其产生的价值究竟能有多大呢?
数据应用
大数据经过多层包装处理最终可以得出很多结果,但是数据结果的应用却是个值得商榷的存在。
一般来讲,大数据分析的结果经过可视化等处理之后可以有一个比较直观的呈现。可是,数据的使用却往往是企业高层决策者的专利。而占据了公司绝对主体的企业员工却很少能够直接获取大数据创造的价值。而如果开放数据给全体企业员工,那么数据安全该如何保障呢?
而从成本角度来看,企业百尺竿头更进一步诚然可贵,可是如果大数据分析结果只是一种企业决策者的灵光一现,那么这笔投资真的能比高层培训更有价值吗?对于中小型企业来讲,大数据投资的意义又在哪里呢?所谓的知己知彼又是否真的能让企业百战百胜呢?
结束语
中国在大数据方面的发展形势十分乐观,但是对于企业来讲,每一笔投资都应当让他有所价值。数据的价值呈现可以有很多种,那么大数据是否真的像部分厂商所宣传的那样“数据操控一切”呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10