
数据科学家价值大跌:自动化工具快将取而代之
请紧记:「IT人的目标是要让自己没有工作。我们的工作就是要让程式把我们现在的工作做得更快,更好,更可靠,最终结果是程式取代了人手、IT人作用已没有了。」IT人如此,数据科学家亦如此!
随着大数据兴起,很多公司都需要懂得统计学的IT人,亦即是大家近期听说的数据科学家数据科学家。此职位目前是人少需需求多(当然并非指香港,而是以亚太区作基准)。关于数据科学家的职业发展有很多讨论。最近LouisDorard在GigaOM上发表了一篇关于数据科学家职业发展的文章。观点是随着数据科学的发展,目前数据科学家的许多工作将被自动化的工具取代。而数据科学家这个职业也将不再存在。文章编译如下:
数据科学家工作的一部分就是把他们的工作自动化。例如说通过一些预测性的API工具来实施工作自动化。然而,这些API已经在某些范畴开始取代数据科学家的工作了。这对这个职业来说可不是什么好事。
我们现在处于大数据的时代。利用电脑学习来进行预测性分析的需求越来越强劲。正如InsightsOne的CEOWaqarHasan指出的一样「预测分析是大数据时代的杀手级应用」。我们也开始看到有一些公司开始针对大众提供电脑学习和预测分析的服务。例如Apigee收购了InsightsOne后就推出了预测性分析的API平台。
我在大学上电脑科学的时候学到的第一课就是「我们工作的终极目标就是要让自己没有工作。我们的工作就是要让程序把我们现在的工作做得更快,更好,更可靠。数据科学也是如此。」
技术将取代数据科学家
数据科学家的绝大部分工作花了在建立PredictionModel:选取与预测相关的变量。选择合适的Model,优化参数等等。目前,这类的工作已经能够有一些自动化的解决方案了。如EmeraldLogic的FACET以及Google和ErastzLabs提供的API。这些API把复杂的电脑Model从数据中抽出来。用户可以专注于数据的采集,而把数据送给这些API,就能够产生一个PredictionModel了。
这些新的工具意味着,在新的模式下,不需要数据科学家的参与了,公司里的每个人都能够参与数据科学的项目。高层将确定战略方向,中层经理们确定分析预测的具体目标,软件工程人员可以专注于项目实施。这里需要每个人都懂得一些电脑知识。不过如果不去深究算法和理论,只关注基本概念和一些具体的应用,Machinelearning即使对于非技术人员来说也能够很快了解。
事实上,如果由具体应用范畴的专家来负责Machinelearning项目的话,往往能够更好地将应用范畴的知识结合到Machinelearning项目里去,例如能够更好的选出那些合适的特征,从而能够做出更好的PredictionModel。
Machinelearning是人工智能的技术。通过数据来建立更好的智能。那么我们在人工智能范畴中还需要手动去进行运算的选择吗?我们当然有智能的自动方式。在人工智能范畴有一个趋势,就是人工智能算法(metaAIAlgorithm),就是给予一些问题,能够自动找到合适的人工智能运算方法。
利用这种方式来进行Machinelearning的塬理就是利用如概率来进行设定以及对特征设定不同权限等等。今天我们的计算能力已经足以让我们进行这样大量的测试。暴力测试可以采用常规的交叉验证,或者采用类似于FACET那样的渐进式技术。
测试可以从对数据的最简单分析开始,如果我们发现数据在分类时有明显的不平衡性时,我们可以试着选择Anomalydetection的算法。
数据科学家将来做什么呢?
有人会说,目前不能自动化的范畴太多了。的确,把所有Machinelearning范畴都自动化是很困难的。不过,目前API在预测方面已经能够比拟那些传统的分析技术了。这方面API创造的价值巨大。
由于这些新的工具出现,数据科学家的角色也在发生变化。现在要成为数据科学家可能比以前更容易了。由于预测性API的出现,由数据科学家来做的工作变得更加容易了。这些工作可以由数据库工程人员或者软件工程人员来进行。这也就是有些人说的数据科学不科学。而我要说的是较为好听的说话:「数据科学正在不断进步。」
在预测API范畴中,数据科学家依然在团队里扮演重要角色。他帮助团队成员使用这些API。更多是作为一个主管的角色来指导大家使用,而不像以前那样需要亲自动手。
更重要的是,数据科学家还需要不断开发Machine learning的自动化工具。除了目前的监督学习(Supervised Learning的API外,也开始出现了强化学习(Reinforcement Learning)的API。此外,还需要提供一些工具能够使得应用范畴专家把他们的知识融入到算法中。
请紧记:「IT人的目标是要让自己没有工作。我们的工作就是要让程式把我们现在的工作做得更快,更好,更可靠,最终结果是程式取代了人手、IT人作用已没有了。」IT人如此,数据科学家亦如此!
随着大数据兴起,很多公司都需要懂得统计学的IT人,亦即是大家近期听说的数据科学家数据科学家。此职位目前是人少需需求多(当然并非指香港,而是以亚太区作基准)。关于数据科学家的职业发展有很多讨论。最近LouisDorard在GigaOM上发表了一篇关于数据科学家职业发展的文章。观点是随着数据科学的发展,目前数据科学家的许多工作将被自动化的工具取代。而数据科学家这个职业也将不再存在。文章编译如下:
数据科学家工作的一部分就是把他们的工作自动化。例如说通过一些预测性的API工具来实施工作自动化。然而,这些API已经在某些范畴开始取代数据科学家的工作了。这对这个职业来说可不是什么好事。
我们现在处于大数据的时代。利用电脑学习来进行预测性分析的需求越来越强劲。正如InsightsOne的CEOWaqarHasan指出的一样「预测分析是大数据时代的杀手级应用」。我们也开始看到有一些公司开始针对大众提供电脑学习和预测分析的服务。例如Apigee收购了InsightsOne后就推出了预测性分析的API平台。
我在大学上电脑科学的时候学到的第一课就是「我们工作的终极目标就是要让自己没有工作。我们的工作就是要让程序把我们现在的工作做得更快,更好,更可靠。数据科学也是如此。」
技术将取代数据科学家
数据科学家的绝大部分工作花了在建立PredictionModel:选取与预测相关的变量。选择合适的Model,优化参数等等。目前,这类的工作已经能够有一些自动化的解决方案了。如EmeraldLogic的FACET以及Google和ErastzLabs提供的API。这些API把复杂的电脑Model从数据中抽出来。用户可以专注于数据的采集,而把数据送给这些API,就能够产生一个PredictionModel了。
这些新的工具意味着,在新的模式下,不需要数据科学家的参与了,公司里的每个人都能够参与数据科学的项目。高层将确定战略方向,中层经理们确定分析预测的具体目标,软件工程人员可以专注于项目实施。这里需要每个人都懂得一些电脑知识。不过如果不去深究算法和理论,只关注基本概念和一些具体的应用,Machinelearning即使对于非技术人员来说也能够很快了解。
事实上,如果由具体应用范畴的专家来负责Machinelearning项目的话,往往能够更好地将应用范畴的知识结合到Machinelearning项目里去,例如能够更好的选出那些合适的特征,从而能够做出更好的PredictionModel。
Machinelearning是人工智能的技术。通过数据来建立更好的智能。那么我们在人工智能范畴中还需要手动去进行运算的选择吗?我们当然有智能的自动方式。在人工智能范畴有一个趋势,就是人工智能算法(metaAIAlgorithm),就是给予一些问题,能够自动找到合适的人工智能运算方法。
利用这种方式来进行Machinelearning的塬理就是利用如概率来进行设定以及对特征设定不同权限等等。今天我们的计算能力已经足以让我们进行这样大量的测试。暴力测试可以采用常规的交叉验证,或者采用类似于FACET那样的渐进式技术。
测试可以从对数据的最简单分析开始,如果我们发现数据在分类时有明显的不平衡性时,我们可以试着选择Anomalydetection的算法。
数据科学家将来做什么呢?
有人会说,目前不能自动化的范畴太多了。的确,把所有Machinelearning范畴都自动化是很困难的。不过,目前API在预测方面已经能够比拟那些传统的分析技术了。这方面API创造的价值巨大。
由于这些新的工具出现,数据科学家的角色也在发生变化。现在要成为数据科学家可能比以前更容易了。由于预测性API的出现,由数据科学家来做的工作变得更加容易了。这些工作可以由数据库工程人员或者软件工程人员来进行。这也就是有些人说的数据科学不科学。而我要说的是较为好听的说话:「数据科学正在不断进步。」
在预测API范畴中,数据科学家依然在团队里扮演重要角色。他帮助团队成员使用这些API。更多是作为一个主管的角色来指导大家使用,而不像以前那样需要亲自动手。
更重要的是,数据科学家还需要不断开发Machine learning的自动化工具。除了目前的监督学习(Supervised Learning的API外,也开始出现了强化学习(Reinforcement Learning)的API。此外,还需要提供一些工具能够使得应用范畴专家把他们的知识融入到算法中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04