京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家价值大跌:自动化工具快将取而代之
请紧记:「IT人的目标是要让自己没有工作。我们的工作就是要让程式把我们现在的工作做得更快,更好,更可靠,最终结果是程式取代了人手、IT人作用已没有了。」IT人如此,数据科学家亦如此!
随着大数据兴起,很多公司都需要懂得统计学的IT人,亦即是大家近期听说的数据科学家数据科学家。此职位目前是人少需需求多(当然并非指香港,而是以亚太区作基准)。关于数据科学家的职业发展有很多讨论。最近LouisDorard在GigaOM上发表了一篇关于数据科学家职业发展的文章。观点是随着数据科学的发展,目前数据科学家的许多工作将被自动化的工具取代。而数据科学家这个职业也将不再存在。文章编译如下:
数据科学家工作的一部分就是把他们的工作自动化。例如说通过一些预测性的API工具来实施工作自动化。然而,这些API已经在某些范畴开始取代数据科学家的工作了。这对这个职业来说可不是什么好事。
我们现在处于大数据的时代。利用电脑学习来进行预测性分析的需求越来越强劲。正如InsightsOne的CEOWaqarHasan指出的一样「预测分析是大数据时代的杀手级应用」。我们也开始看到有一些公司开始针对大众提供电脑学习和预测分析的服务。例如Apigee收购了InsightsOne后就推出了预测性分析的API平台。
我在大学上电脑科学的时候学到的第一课就是「我们工作的终极目标就是要让自己没有工作。我们的工作就是要让程序把我们现在的工作做得更快,更好,更可靠。数据科学也是如此。」
技术将取代数据科学家
数据科学家的绝大部分工作花了在建立PredictionModel:选取与预测相关的变量。选择合适的Model,优化参数等等。目前,这类的工作已经能够有一些自动化的解决方案了。如EmeraldLogic的FACET以及Google和ErastzLabs提供的API。这些API把复杂的电脑Model从数据中抽出来。用户可以专注于数据的采集,而把数据送给这些API,就能够产生一个PredictionModel了。
这些新的工具意味着,在新的模式下,不需要数据科学家的参与了,公司里的每个人都能够参与数据科学的项目。高层将确定战略方向,中层经理们确定分析预测的具体目标,软件工程人员可以专注于项目实施。这里需要每个人都懂得一些电脑知识。不过如果不去深究算法和理论,只关注基本概念和一些具体的应用,Machinelearning即使对于非技术人员来说也能够很快了解。
事实上,如果由具体应用范畴的专家来负责Machinelearning项目的话,往往能够更好地将应用范畴的知识结合到Machinelearning项目里去,例如能够更好的选出那些合适的特征,从而能够做出更好的PredictionModel。
Machinelearning是人工智能的技术。通过数据来建立更好的智能。那么我们在人工智能范畴中还需要手动去进行运算的选择吗?我们当然有智能的自动方式。在人工智能范畴有一个趋势,就是人工智能算法(metaAIAlgorithm),就是给予一些问题,能够自动找到合适的人工智能运算方法。
利用这种方式来进行Machinelearning的塬理就是利用如概率来进行设定以及对特征设定不同权限等等。今天我们的计算能力已经足以让我们进行这样大量的测试。暴力测试可以采用常规的交叉验证,或者采用类似于FACET那样的渐进式技术。
测试可以从对数据的最简单分析开始,如果我们发现数据在分类时有明显的不平衡性时,我们可以试着选择Anomalydetection的算法。
数据科学家将来做什么呢?
有人会说,目前不能自动化的范畴太多了。的确,把所有Machinelearning范畴都自动化是很困难的。不过,目前API在预测方面已经能够比拟那些传统的分析技术了。这方面API创造的价值巨大。
由于这些新的工具出现,数据科学家的角色也在发生变化。现在要成为数据科学家可能比以前更容易了。由于预测性API的出现,由数据科学家来做的工作变得更加容易了。这些工作可以由数据库工程人员或者软件工程人员来进行。这也就是有些人说的数据科学不科学。而我要说的是较为好听的说话:「数据科学正在不断进步。」
在预测API范畴中,数据科学家依然在团队里扮演重要角色。他帮助团队成员使用这些API。更多是作为一个主管的角色来指导大家使用,而不像以前那样需要亲自动手。
更重要的是,数据科学家还需要不断开发Machine learning的自动化工具。除了目前的监督学习(Supervised Learning的API外,也开始出现了强化学习(Reinforcement Learning)的API。此外,还需要提供一些工具能够使得应用范畴专家把他们的知识融入到算法中。
请紧记:「IT人的目标是要让自己没有工作。我们的工作就是要让程式把我们现在的工作做得更快,更好,更可靠,最终结果是程式取代了人手、IT人作用已没有了。」IT人如此,数据科学家亦如此!
随着大数据兴起,很多公司都需要懂得统计学的IT人,亦即是大家近期听说的数据科学家数据科学家。此职位目前是人少需需求多(当然并非指香港,而是以亚太区作基准)。关于数据科学家的职业发展有很多讨论。最近LouisDorard在GigaOM上发表了一篇关于数据科学家职业发展的文章。观点是随着数据科学的发展,目前数据科学家的许多工作将被自动化的工具取代。而数据科学家这个职业也将不再存在。文章编译如下:
数据科学家工作的一部分就是把他们的工作自动化。例如说通过一些预测性的API工具来实施工作自动化。然而,这些API已经在某些范畴开始取代数据科学家的工作了。这对这个职业来说可不是什么好事。
我们现在处于大数据的时代。利用电脑学习来进行预测性分析的需求越来越强劲。正如InsightsOne的CEOWaqarHasan指出的一样「预测分析是大数据时代的杀手级应用」。我们也开始看到有一些公司开始针对大众提供电脑学习和预测分析的服务。例如Apigee收购了InsightsOne后就推出了预测性分析的API平台。
我在大学上电脑科学的时候学到的第一课就是「我们工作的终极目标就是要让自己没有工作。我们的工作就是要让程序把我们现在的工作做得更快,更好,更可靠。数据科学也是如此。」
技术将取代数据科学家
数据科学家的绝大部分工作花了在建立PredictionModel:选取与预测相关的变量。选择合适的Model,优化参数等等。目前,这类的工作已经能够有一些自动化的解决方案了。如EmeraldLogic的FACET以及Google和ErastzLabs提供的API。这些API把复杂的电脑Model从数据中抽出来。用户可以专注于数据的采集,而把数据送给这些API,就能够产生一个PredictionModel了。
这些新的工具意味着,在新的模式下,不需要数据科学家的参与了,公司里的每个人都能够参与数据科学的项目。高层将确定战略方向,中层经理们确定分析预测的具体目标,软件工程人员可以专注于项目实施。这里需要每个人都懂得一些电脑知识。不过如果不去深究算法和理论,只关注基本概念和一些具体的应用,Machinelearning即使对于非技术人员来说也能够很快了解。
事实上,如果由具体应用范畴的专家来负责Machinelearning项目的话,往往能够更好地将应用范畴的知识结合到Machinelearning项目里去,例如能够更好的选出那些合适的特征,从而能够做出更好的PredictionModel。
Machinelearning是人工智能的技术。通过数据来建立更好的智能。那么我们在人工智能范畴中还需要手动去进行运算的选择吗?我们当然有智能的自动方式。在人工智能范畴有一个趋势,就是人工智能算法(metaAIAlgorithm),就是给予一些问题,能够自动找到合适的人工智能运算方法。
利用这种方式来进行Machinelearning的塬理就是利用如概率来进行设定以及对特征设定不同权限等等。今天我们的计算能力已经足以让我们进行这样大量的测试。暴力测试可以采用常规的交叉验证,或者采用类似于FACET那样的渐进式技术。
测试可以从对数据的最简单分析开始,如果我们发现数据在分类时有明显的不平衡性时,我们可以试着选择Anomalydetection的算法。
数据科学家将来做什么呢?
有人会说,目前不能自动化的范畴太多了。的确,把所有Machinelearning范畴都自动化是很困难的。不过,目前API在预测方面已经能够比拟那些传统的分析技术了。这方面API创造的价值巨大。
由于这些新的工具出现,数据科学家的角色也在发生变化。现在要成为数据科学家可能比以前更容易了。由于预测性API的出现,由数据科学家来做的工作变得更加容易了。这些工作可以由数据库工程人员或者软件工程人员来进行。这也就是有些人说的数据科学不科学。而我要说的是较为好听的说话:「数据科学正在不断进步。」
在预测API范畴中,数据科学家依然在团队里扮演重要角色。他帮助团队成员使用这些API。更多是作为一个主管的角色来指导大家使用,而不像以前那样需要亲自动手。
更重要的是,数据科学家还需要不断开发Machine learning的自动化工具。除了目前的监督学习(Supervised Learning的API外,也开始出现了强化学习(Reinforcement Learning)的API。此外,还需要提供一些工具能够使得应用范畴专家把他们的知识融入到算法中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22