
在大数据时代中,如何更快地即时分析巨量数据,成为新的创业契机。来自台湾的团队「核桃运算MacroData」,从最底层的数据分析架构出发,耗费两年半的时间,研发出可分析不同资料属性,以及横跨各式硬体的资料分析引擎,比起现有的资料库来说,运算速度还要快50倍到100倍,今年下半年将正式走入市场。
令人意外的是,核桃运算一开始并非瞄準大数据商机。核桃运算的灵魂人物薛文蔚,是台大资工系第一届学生,毕业取得哥伦比亚大学资工博士学位后,先到华尔街工作两年,在1995年开始创业,开发教育平台。2000年回到台湾 ,在知名的软体公司Computer Associates负责亚洲地区的合资公司业务,随后在台湾成立供应链管理公司「联合通商eBizprise」,和在中国的子公司「eBizServe」。
2011年,薛文蔚遇到一个中国大陆大型零售商的供应链预测问题。当20万个品项、上万个通路,再加上要做100週的预测时,资料共有惊人的上百亿点,如此庞大的资料量,传统的资料库无法负荷。他发现市场空缺后,找来公司裡两位同事黄怡诚和赖育骏,一同成立研发团队。
虽然本来是从供应链管理的问题切入,但深入研究后薛文蔚却发现,这是大数据的问题。他解释,现在用的资料库技术都是1970年时提出的架构,很多理论是基于当时的假设,「但当底层条件已经改变时,我们不该再用过去的模式想事情。」于是团队从非常底层的架构重新思考,适合现在使用的运算模式是什么。
其中最大的差异是,过去资料运算时,需先从资料储存的地方如硬碟,搬到记忆体运算后,再把资料放回去。但现在的资料量早已是过去的好几千万倍,薛文蔚打个比方:「Data的成长就好像房价一样,Code的成长则好像薪水一样。」
如果沿用过去搬动资料的运算方式,大多时间都是花在「搬移」上,因此核桃运算主张透过不搬动的「in-place computing」运算方式,直接把程式送到资料的所在地运算,少了搬移动作,资料运算速度就会提昇很多。目前团队已申请四项美国专利,其中叁项已被核准。
比起现有的资料库运算方式,核桃运算共同创办人陈元贞解释,以目前知名的Hadoop来说,透过分散式运算,把1部机器要算的东西放到100部机器上算,虽能提升运算速度,但却不是每个公司都能负担的起部建分散式运算系统。
若是非关联式的NoSQL资料库,数据存储没有一定的模式架构,虽然速度可以变快,但也因为不需固定模式,当要做两者的比较分析或资料採矿就有些困难。若是传统的MySQL资料库,更是无法负荷现在庞大的资料量。
从2011年下半年先在母公司联合通商旗下成立团队开始,众人花了两年半时间研发,终于在今年推出产品「Big Object」,团队也在今年2月从母公司独立。Big Object主要运行在64 bit的装置上,因为採用「in-place computing」,最大优势就是快,运算速度可快50倍至100倍,因此可做到当下的即时分析。
此外,Big Object也能分析异质性资料,不只企业本身的商务资料,也能结合open data和非结构性资料,像是零售业者可和天气预测或脸书贴文交叉比对。「就像冰山一样,本来你只看到交易资料,可是更多的是你没有看到水面底下的资料,」陈元贞说。
也因为Big Object是很轻巧的资料运算引擎,在未来物联网时代,小至眼镜、手錶,大到汽车、冰箱,每个装置都能成为分析资料的机器,因此这些装置也都可以嵌入Big Object的分析引擎,根据数据做出最优化的预测或行动,如调整车速、冰箱温度等。
Big Object主要针对BI产品(Business Intelligence,从数据分析中挖掘商业价值)或LOG分析的软体开发商,可直接将Big Object嵌入在软体裡,收入以授权年费为主。目前核桃运算已有些试用客户,像是在台湾就已和神坊资讯旗下的购物网站合作,透过Big Object计算商品间的相关性,进而做出即时的购物推荐。
产品到位后,今年下半年Big Object将开始走入市场,目前处于客户开发阶段。陈元贞表示,由于这类应用主要在美国市场居多,因此今年3月团队也在美国註册公司,预计今年在台湾和美国都要各自招募十人团队,未来台湾负责研发,美国则负责业务。
核桃运算四位共同创办人,从左至右为赖育骏、薛文蔚、黄怡诚和陈元贞
【创业教我的事】找出自己的定位,在过程中随时保有自己的判断,尤其是对产品和市场策略的看法。
Q1. 希望提供这个社会什么价值? 最主要是提供一个快速又可负担的分析引擎,帮助资料分析者或商业决策者,发掘出隐含在大量资料背后的资讯。
Q2. 长远来看,贵公司想成为何种类型的公司?
我们希望做到「资料处理界的Intel」,未来软体内可以搭载BigObject的运算核心,不管是CRM、ERP、BI或是Log分析软体,都能透过BigObject的即时分析而有更优化的软体功能。
本文来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18