京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据时代中,如何更快地即时分析巨量数据,成为新的创业契机。来自台湾的团队「核桃运算MacroData」,从最底层的数据分析架构出发,耗费两年半的时间,研发出可分析不同资料属性,以及横跨各式硬体的资料分析引擎,比起现有的资料库来说,运算速度还要快50倍到100倍,今年下半年将正式走入市场。
令人意外的是,核桃运算一开始并非瞄準大数据商机。核桃运算的灵魂人物薛文蔚,是台大资工系第一届学生,毕业取得哥伦比亚大学资工博士学位后,先到华尔街工作两年,在1995年开始创业,开发教育平台。2000年回到台湾 ,在知名的软体公司Computer Associates负责亚洲地区的合资公司业务,随后在台湾成立供应链管理公司「联合通商eBizprise」,和在中国的子公司「eBizServe」。
2011年,薛文蔚遇到一个中国大陆大型零售商的供应链预测问题。当20万个品项、上万个通路,再加上要做100週的预测时,资料共有惊人的上百亿点,如此庞大的资料量,传统的资料库无法负荷。他发现市场空缺后,找来公司裡两位同事黄怡诚和赖育骏,一同成立研发团队。
虽然本来是从供应链管理的问题切入,但深入研究后薛文蔚却发现,这是大数据的问题。他解释,现在用的资料库技术都是1970年时提出的架构,很多理论是基于当时的假设,「但当底层条件已经改变时,我们不该再用过去的模式想事情。」于是团队从非常底层的架构重新思考,适合现在使用的运算模式是什么。
其中最大的差异是,过去资料运算时,需先从资料储存的地方如硬碟,搬到记忆体运算后,再把资料放回去。但现在的资料量早已是过去的好几千万倍,薛文蔚打个比方:「Data的成长就好像房价一样,Code的成长则好像薪水一样。」
如果沿用过去搬动资料的运算方式,大多时间都是花在「搬移」上,因此核桃运算主张透过不搬动的「in-place computing」运算方式,直接把程式送到资料的所在地运算,少了搬移动作,资料运算速度就会提昇很多。目前团队已申请四项美国专利,其中叁项已被核准。
比起现有的资料库运算方式,核桃运算共同创办人陈元贞解释,以目前知名的Hadoop来说,透过分散式运算,把1部机器要算的东西放到100部机器上算,虽能提升运算速度,但却不是每个公司都能负担的起部建分散式运算系统。
若是非关联式的NoSQL资料库,数据存储没有一定的模式架构,虽然速度可以变快,但也因为不需固定模式,当要做两者的比较分析或资料採矿就有些困难。若是传统的MySQL资料库,更是无法负荷现在庞大的资料量。
从2011年下半年先在母公司联合通商旗下成立团队开始,众人花了两年半时间研发,终于在今年推出产品「Big Object」,团队也在今年2月从母公司独立。Big Object主要运行在64 bit的装置上,因为採用「in-place computing」,最大优势就是快,运算速度可快50倍至100倍,因此可做到当下的即时分析。
此外,Big Object也能分析异质性资料,不只企业本身的商务资料,也能结合open data和非结构性资料,像是零售业者可和天气预测或脸书贴文交叉比对。「就像冰山一样,本来你只看到交易资料,可是更多的是你没有看到水面底下的资料,」陈元贞说。
也因为Big Object是很轻巧的资料运算引擎,在未来物联网时代,小至眼镜、手錶,大到汽车、冰箱,每个装置都能成为分析资料的机器,因此这些装置也都可以嵌入Big Object的分析引擎,根据数据做出最优化的预测或行动,如调整车速、冰箱温度等。
Big Object主要针对BI产品(Business Intelligence,从数据分析中挖掘商业价值)或LOG分析的软体开发商,可直接将Big Object嵌入在软体裡,收入以授权年费为主。目前核桃运算已有些试用客户,像是在台湾就已和神坊资讯旗下的购物网站合作,透过Big Object计算商品间的相关性,进而做出即时的购物推荐。
产品到位后,今年下半年Big Object将开始走入市场,目前处于客户开发阶段。陈元贞表示,由于这类应用主要在美国市场居多,因此今年3月团队也在美国註册公司,预计今年在台湾和美国都要各自招募十人团队,未来台湾负责研发,美国则负责业务。
核桃运算四位共同创办人,从左至右为赖育骏、薛文蔚、黄怡诚和陈元贞
【创业教我的事】找出自己的定位,在过程中随时保有自己的判断,尤其是对产品和市场策略的看法。
Q1. 希望提供这个社会什么价值? 最主要是提供一个快速又可负担的分析引擎,帮助资料分析者或商业决策者,发掘出隐含在大量资料背后的资讯。
Q2. 长远来看,贵公司想成为何种类型的公司?
我们希望做到「资料处理界的Intel」,未来软体内可以搭载BigObject的运算核心,不管是CRM、ERP、BI或是Log分析软体,都能透过BigObject的即时分析而有更优化的软体功能。
本文来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27