京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用WEKA编写数据挖掘算法
WEKA是由新西兰怀卡托大学开发的开源项目。WEKA是由JAVA编写的,并且限制在GNU通用公众证书的条件下发布,可以运行在所有的操作系统中。WEKA工作平台包含能处理所有标准数据挖掘问题的方法:回归、分类、聚类、关联规则挖掘以及属性选择。作为数据挖掘爱好者自然要对WEKA的源代码进行分析并以及改进,努力写出自己的数据挖掘算法。
下面着重介绍一下如何利用WEKA编写新的数据挖掘算法:
注意:WEKA的版本有两个版本:稳定版(STABLE)和开发版(DEVELOP),不同WEKA版本与不同JDK的版本匹配,稳定版WEKA3-4的与JDK1.4.2匹配,而开发版WEKA3-5与JDK1.5匹配,WEKA3-5新加入了对数据库的数据连接。稳定版直接下载weka-src.jar文件就行了,而开发版需使用CVS连接到sourceForge下载,:pserver:cvs_anon@cvs.scms.waikato.ac.nz:/usr/local/global-cvs/ml_cvs。本文以稳定版为例。
一、首先从WEKA官方网站(http://www.cs.waikato.ac.nz/ml/weka)下载WEKA程序包。将程序包解压获得weka-src.jar源文件,再将源代码解压缩导入某个JAVA开发工具中(图1),如:JBuilder,Eclipse,Netbeans等。我现在以Netbeans为例。
二、为了不与WEKA中已包含的算法相冲突,最好自己建立一个JAVA包,将自己编写的挖掘算法存放在该包内(图2)。我以建立hzm包为例:

三、在新的包hzm内建立新的java类,然后双击编写数据挖掘算法程序代码,本人以实现ID3算法为例讲解具体操作过程。

再将weka.classifiers.trees下的id3算法复制到新建的ID3类中(这只是演示,当然最好还是自己写新的挖掘算法),修改一下类中提示的错误,保存就行了。
四、编写好新的挖掘算法并不能马上在weka中exlorer模式中看到,还要修改weka.gui包中的GenericObjectEditor.props文件。如:我刚才建立的ID3类在weka.classifiers.hzm包中,就要在GenericObjectEditor.props中的# Lists the Classifiers I want to choose from段后添加weka.classifiers.hzm.ID3,\

五、就可以编译整个weka项目,在选择主类时选择weka.gui.GUIChooser这个类,就可以运行和调试你编写好的算法了,祝大家都能写出优秀的挖掘算法!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27