
管理会计迈入“大数据时代”
财务需要在管理上发挥作用。当大数据与财务碰撞时,大数据在管理会计上发挥的作用尤为明显。
很多企业都曾经遭遇过难辨票据真假、无法掌控员工的真实出差天数等难题。此时,大数据将在财务审计中发挥重要的作用,比如结合天气信息、航班信息、票务信息等辨别财务信息的真假。
其实,这只是大数据时代财务变革的一个简单的例子。在大数据平台下,管理会计能够更精细化、更有效率地为企业决策提供有用信息。同样,在大数据时代,会计人也正面临着前所未有的机遇和挑战。
大数据重构“企业智慧”
以云计算、大数据、移动互联、社交网络为代表的新兴技术发展催生着新IT时代的到来。而新IT时代的企业信息化的一个典型的特点是以数据重构商业模式、服务与产品、经营理念。
从某种程度上说,大数据正重构“企业智慧”。
工业和信息化部信息化推进司司长徐愈说,随着信息资源的进一步开放、共享和挖掘,企业迎来了更多发展机会。国家从政策层面怎样更多地支持信息技术共同发展,怎样支持企业更好地利用大数据技术提升企业竞争力,是目前相关部门制定政策时重点考虑的问题。
而对于大数据将在企业运营中发挥的重要作用,浪潮集团执行总裁王兴山认为,大数据时代下,企业信息化架构强调云计算、大数据、社交网络和移动应用,用新技术不断颠覆传统企业的运营模式,帮助企业实现差异化创新。
每一轮新技术革命的爆发都会对企业的管理模式和运营模式产生深刻的影响。新IT技术与企业管理创新的融合催生了新的业务模式。
“大数据正在重构‘企业智慧’,推动企业转型升级。”王兴山认为,“在需求和技术的双重驱动下,管理软件产业迎来了巨大的发展机遇。”其中,大数据带来的财务变革格外令人振奋,尤其是其在管理会计方面的应用。
大数据与管理会计的融合
财务需要在管理上发挥作用。当大数据与财务碰撞时,大数据在管理会计上发挥的作用尤为明显。
“对于管理会计来说,大数据理念为企业管理层合理配置资源和优化决策并对当前和未来的经济活动进行预测、决策、规划、控制和考核评价等,提供了更多可能。”广东电信财务共享服务中心综合支撑室经理张育强说,说白了,大数据理念在某种程度上是预测分析、决策分析、成本控制、责任会计等管理会计多种功能得到良好运用的基础。
具体来说,管理会计是企业内部的会计,是从数据到决策的一个过程。“数据的来源更多地依靠外部数据,比如企业预算在很大程度上要依靠外部数据。以差旅费为例,北京、上海、广东等每个区域的费用标准都不同,在会计上对应的每一项费用科目的标准也就不同。确定标准的过程,我们称为‘对标’。标对好了,管理会计也就做出来了。”王兴山说,其中,大数据的作用不可替代。
但同时,张育强认为,在大数据方面,既要灵活应用管理会计,又要敢于突破管理会计。
“大数据理论实际上只是为管理会计应用提供更加良好的基础,让管理会计能够从大数据中客观分析、解读、显化与还原,从而扩大管理会计的适用范围。但如果在大数据处理过程中过于沉湎于传统管理会计理论与模型,无意中忽略了大数据整合、应用过程中的一些客观结论或信息,效果也许就会南辕北辙,甚至歪曲事实。”张育强说。
大数据浪潮中的会计人
在大数据时代,CFO的职能已经从财务管理延伸到提升企业整体绩效方面,企业财务人员也要随之转型。财务共享中心是影响财务的一项革命。对此,王兴山表示:“企业的财务流程和岗位都要改变。出纳、记账人员都要集中、下放。企业需要对财务人员进行重新分离,把一些从事标准化、专业化且重复工作的财务人员进行剥离与集中。”目前,会计行业的大数据还主要以数据采集和清理为主。
当大量庞杂无序的数据被收集起来之后,如何将有用的数据筛选出来并确立它们之间的关联关系是数据清理的重要工作。未来,或许会有专业公司专注于数据清理。
对此,张育强认为,从管理会计角度看,财务人员要非常了解行业各生产经营流程环节和要素之间的可能关联及其折射在企业业务、管理、内控、财会、统计等数据之间的“血缘关系”。要努力寻找、建立这些数据之间的关联关系。比如,可以通过实施元数据管理、标准化处理各系统数据源、统一数据业务及系统口径、建立统计数据的元数据管理模型及精细化的数据质理稽核模型,实现数据质量的闭环管理,并在此基础上实现可视化和精细化管理。
无论大数据应用还是管理会计应用,人的因素都是关键。
“从技术上看,会计人员需要理解大数据技术,能够解读大数据分析的结论。从行业上看,会计人员要非常了解行业各个生产环节的流程关系、各要素之间的可能关联,并且将大数据得到的结论对应到行业的具体环节中。从管理上看,会计人员需要找出可执行、可解决问题的决策依据。”张育强表示,这要求会计人员深谙技术、熟悉管理和管理会计的各种方法,最重要的是要有系统性的思维,能够从专业的角度,综合看待大数据与行业的关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15