京公网安备 11010802034615号
经营许可证编号:京B2-20210330
管理会计迈入“大数据时代”
财务需要在管理上发挥作用。当大数据与财务碰撞时,大数据在管理会计上发挥的作用尤为明显。
很多企业都曾经遭遇过难辨票据真假、无法掌控员工的真实出差天数等难题。此时,大数据将在财务审计中发挥重要的作用,比如结合天气信息、航班信息、票务信息等辨别财务信息的真假。
其实,这只是大数据时代财务变革的一个简单的例子。在大数据平台下,管理会计能够更精细化、更有效率地为企业决策提供有用信息。同样,在大数据时代,会计人也正面临着前所未有的机遇和挑战。
大数据重构“企业智慧”
以云计算、大数据、移动互联、社交网络为代表的新兴技术发展催生着新IT时代的到来。而新IT时代的企业信息化的一个典型的特点是以数据重构商业模式、服务与产品、经营理念。
从某种程度上说,大数据正重构“企业智慧”。
工业和信息化部信息化推进司司长徐愈说,随着信息资源的进一步开放、共享和挖掘,企业迎来了更多发展机会。国家从政策层面怎样更多地支持信息技术共同发展,怎样支持企业更好地利用大数据技术提升企业竞争力,是目前相关部门制定政策时重点考虑的问题。
而对于大数据将在企业运营中发挥的重要作用,浪潮集团执行总裁王兴山认为,大数据时代下,企业信息化架构强调云计算、大数据、社交网络和移动应用,用新技术不断颠覆传统企业的运营模式,帮助企业实现差异化创新。
每一轮新技术革命的爆发都会对企业的管理模式和运营模式产生深刻的影响。新IT技术与企业管理创新的融合催生了新的业务模式。
“大数据正在重构‘企业智慧’,推动企业转型升级。”王兴山认为,“在需求和技术的双重驱动下,管理软件产业迎来了巨大的发展机遇。”其中,大数据带来的财务变革格外令人振奋,尤其是其在管理会计方面的应用。
大数据与管理会计的融合
财务需要在管理上发挥作用。当大数据与财务碰撞时,大数据在管理会计上发挥的作用尤为明显。
“对于管理会计来说,大数据理念为企业管理层合理配置资源和优化决策并对当前和未来的经济活动进行预测、决策、规划、控制和考核评价等,提供了更多可能。”广东电信财务共享服务中心综合支撑室经理张育强说,说白了,大数据理念在某种程度上是预测分析、决策分析、成本控制、责任会计等管理会计多种功能得到良好运用的基础。
具体来说,管理会计是企业内部的会计,是从数据到决策的一个过程。“数据的来源更多地依靠外部数据,比如企业预算在很大程度上要依靠外部数据。以差旅费为例,北京、上海、广东等每个区域的费用标准都不同,在会计上对应的每一项费用科目的标准也就不同。确定标准的过程,我们称为‘对标’。标对好了,管理会计也就做出来了。”王兴山说,其中,大数据的作用不可替代。
但同时,张育强认为,在大数据方面,既要灵活应用管理会计,又要敢于突破管理会计。
“大数据理论实际上只是为管理会计应用提供更加良好的基础,让管理会计能够从大数据中客观分析、解读、显化与还原,从而扩大管理会计的适用范围。但如果在大数据处理过程中过于沉湎于传统管理会计理论与模型,无意中忽略了大数据整合、应用过程中的一些客观结论或信息,效果也许就会南辕北辙,甚至歪曲事实。”张育强说。
大数据浪潮中的会计人
在大数据时代,CFO的职能已经从财务管理延伸到提升企业整体绩效方面,企业财务人员也要随之转型。财务共享中心是影响财务的一项革命。对此,王兴山表示:“企业的财务流程和岗位都要改变。出纳、记账人员都要集中、下放。企业需要对财务人员进行重新分离,把一些从事标准化、专业化且重复工作的财务人员进行剥离与集中。”目前,会计行业的大数据还主要以数据采集和清理为主。
当大量庞杂无序的数据被收集起来之后,如何将有用的数据筛选出来并确立它们之间的关联关系是数据清理的重要工作。未来,或许会有专业公司专注于数据清理。
对此,张育强认为,从管理会计角度看,财务人员要非常了解行业各生产经营流程环节和要素之间的可能关联及其折射在企业业务、管理、内控、财会、统计等数据之间的“血缘关系”。要努力寻找、建立这些数据之间的关联关系。比如,可以通过实施元数据管理、标准化处理各系统数据源、统一数据业务及系统口径、建立统计数据的元数据管理模型及精细化的数据质理稽核模型,实现数据质量的闭环管理,并在此基础上实现可视化和精细化管理。
无论大数据应用还是管理会计应用,人的因素都是关键。
“从技术上看,会计人员需要理解大数据技术,能够解读大数据分析的结论。从行业上看,会计人员要非常了解行业各个生产环节的流程关系、各要素之间的可能关联,并且将大数据得到的结论对应到行业的具体环节中。从管理上看,会计人员需要找出可执行、可解决问题的决策依据。”张育强表示,这要求会计人员深谙技术、熟悉管理和管理会计的各种方法,最重要的是要有系统性的思维,能够从专业的角度,综合看待大数据与行业的关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15