京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据催生决策新模式 未来将改变更多
“数据多跑路、群众少跑腿”,如今,对大数据的应用已经开始切实影响到百姓的日常生活。经过近几年的发展,大数据俨然成为了一大产业,基于数据收集与分析所形成的决策模式也正在被更多的市场主体所采用。未来,大数据还将改变更多。
大数据不完全等同于“数据”
数据显示,互联网上的数据每年增长50%,每两年便将翻一番,而目前世界上90%以上的数据是最近几年才产生的。据IDC预测,到2020年全球将总共拥有35ZB的数据量。
作为近两年兴起的热词,很多人将大数据的“数据”简单地理解为互联网数据。诚然,随着互联网技术和应用的日益成熟,网络数据日益庞杂,但事实上,无论是线上还是线下、虚拟还是实体,一直都存在着大量的数据。而大数据要做的则是将这些曾经“深藏闺中”的数据挖掘出来,利用起来。
2015年9月,国务院发布《关于印发促进大数据发展行动纲要的通知》。《通知》中将大数据描述为:大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。
牛津大学教授维克托·迈尔·舍恩伯格在其著作《大数据时代》中说:“大数据是人们获得新的认知、创造新的价值的源泉,还是改变市场、组织机构,以及政府与公民关系的方法。”
根据以上两种表述,可以看出,大数据是基于数据集合与分析所产生的一种新兴业态,对传统行业来说,大数据更是一种工具。可以说,只有通过对大数据资源的开发,互联网的价值才能得到充分挖掘,“互联网+”也才能真正水到渠成。
大数据形成决策新模式
大数据的应用离不开对数据的分析,也就是大数据技术。关于什么是大数据技术,业界并无标准答案,但一般而言,可以将它理解为对海量数据的计算和加工,其核心作用之一是预测。
谷歌利用人们的搜索记录挖掘数据二次利用价值,比如预测某地流感爆发的趋势;亚马逊利用用户的购买和浏览历史数据进行有针对性的书籍购买推荐,以此有效提升销售量;Farecast利用过去十年所有的航线机票价格打折数据,来帮助用户判断购买机票的时机是否合适。
最早提出大数据时代到来的麦肯锡说道:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”显然,基于大数据形成决策的模式可以并已经为不少企业带来了盈利。
大数据产业涉及数据源、场景化应用、可视化展示以及数据安全等多个方面。基于这几大领域,国内也诞生了大量的专业化大数据公司。公开数据显示,仅2016年上半年就有22起大数据相关的融资事件,行业势头甚好。除此之外,像BAT这样的互联网公司,也都在充分挖掘平台集聚的大量数据,孵化新业务。
未来生活离不开大数据
事实上,数据能力也正在成为一种国家竞争力。美国、英国、日本等国相继推出大数据战略,以提升政府效能。在我国,十八届五中全会提出要实施网络强国战略,实施“互联网+”行动计划,发展分享经济,实施国家大数据战略。
作为一种“基础性战略资源”,大数据用途广泛、前景巨大。抑或说,大数据不只是一个产业这么简单,它在社会的各个领域中都无所不在,可以与很多产业“相加”。
《关于促进大数据发展的行动纲要》明确指出,要立足我国国情和现实需要,推动大数据发展和应用在未来5—10年逐步实现以下目标:打造精准治理、多方协作的社会治理新模式;建立运行平稳、安全高效的经济运行新机制;构建以人为本、惠及全民的民生服务新体系;开启大众创业、万众创新的创新驱动新格局;培育高端智能、新兴繁荣的产业发展新生态。
可以预见,大数据不仅将创造下一代互联网生态和创新体系,还将重新塑造下一代制造业形态以及社会治理结构。关于“大数据将改变什么”很难用一句话概括,但至少有一点可以肯定,我们未来的生活,必定离不开大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17