京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据催生决策新模式 未来将改变更多
“数据多跑路、群众少跑腿”,如今,对大数据的应用已经开始切实影响到百姓的日常生活。经过近几年的发展,大数据俨然成为了一大产业,基于数据收集与分析所形成的决策模式也正在被更多的市场主体所采用。未来,大数据还将改变更多。
大数据不完全等同于“数据”
数据显示,互联网上的数据每年增长50%,每两年便将翻一番,而目前世界上90%以上的数据是最近几年才产生的。据IDC预测,到2020年全球将总共拥有35ZB的数据量。
作为近两年兴起的热词,很多人将大数据的“数据”简单地理解为互联网数据。诚然,随着互联网技术和应用的日益成熟,网络数据日益庞杂,但事实上,无论是线上还是线下、虚拟还是实体,一直都存在着大量的数据。而大数据要做的则是将这些曾经“深藏闺中”的数据挖掘出来,利用起来。
2015年9月,国务院发布《关于印发促进大数据发展行动纲要的通知》。《通知》中将大数据描述为:大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。
牛津大学教授维克托·迈尔·舍恩伯格在其著作《大数据时代》中说:“大数据是人们获得新的认知、创造新的价值的源泉,还是改变市场、组织机构,以及政府与公民关系的方法。”
根据以上两种表述,可以看出,大数据是基于数据集合与分析所产生的一种新兴业态,对传统行业来说,大数据更是一种工具。可以说,只有通过对大数据资源的开发,互联网的价值才能得到充分挖掘,“互联网+”也才能真正水到渠成。
大数据形成决策新模式
大数据的应用离不开对数据的分析,也就是大数据技术。关于什么是大数据技术,业界并无标准答案,但一般而言,可以将它理解为对海量数据的计算和加工,其核心作用之一是预测。
谷歌利用人们的搜索记录挖掘数据二次利用价值,比如预测某地流感爆发的趋势;亚马逊利用用户的购买和浏览历史数据进行有针对性的书籍购买推荐,以此有效提升销售量;Farecast利用过去十年所有的航线机票价格打折数据,来帮助用户判断购买机票的时机是否合适。
最早提出大数据时代到来的麦肯锡说道:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”显然,基于大数据形成决策的模式可以并已经为不少企业带来了盈利。
大数据产业涉及数据源、场景化应用、可视化展示以及数据安全等多个方面。基于这几大领域,国内也诞生了大量的专业化大数据公司。公开数据显示,仅2016年上半年就有22起大数据相关的融资事件,行业势头甚好。除此之外,像BAT这样的互联网公司,也都在充分挖掘平台集聚的大量数据,孵化新业务。
未来生活离不开大数据
事实上,数据能力也正在成为一种国家竞争力。美国、英国、日本等国相继推出大数据战略,以提升政府效能。在我国,十八届五中全会提出要实施网络强国战略,实施“互联网+”行动计划,发展分享经济,实施国家大数据战略。
作为一种“基础性战略资源”,大数据用途广泛、前景巨大。抑或说,大数据不只是一个产业这么简单,它在社会的各个领域中都无所不在,可以与很多产业“相加”。
《关于促进大数据发展的行动纲要》明确指出,要立足我国国情和现实需要,推动大数据发展和应用在未来5—10年逐步实现以下目标:打造精准治理、多方协作的社会治理新模式;建立运行平稳、安全高效的经济运行新机制;构建以人为本、惠及全民的民生服务新体系;开启大众创业、万众创新的创新驱动新格局;培育高端智能、新兴繁荣的产业发展新生态。
可以预见,大数据不仅将创造下一代互联网生态和创新体系,还将重新塑造下一代制造业形态以及社会治理结构。关于“大数据将改变什么”很难用一句话概括,但至少有一点可以肯定,我们未来的生活,必定离不开大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28